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Abstract

This paper presents the Congressional Budget Office’s simulation model for analyzing leg-
islative proposals that may substantially affect new drug development. The model uses
estimates of changes in expected future profits or development costs to estimate the per-
cent change in the number of drug candidates entering the various stages of human clinical
trials. Given changes in decisions to enter at each stage, the model estimates when and
by how much the number of new drugs entering the market will change. To illustrate the
implications of the model, the paper considers a legislative change that lowers expected
returns for the top-earning drugs. A 15 percent to 25 percent reduction in expected returns
for drugs in the top quintile of expected returns is associated with a 0.5 percent average
annual reduction in the number of new drugs entering the market in the first decade under
the policy, increasing to an 8 percent annual average reduction in the third decade. The
analysis takes the estimated impact of the policy on expected returns as given. In CBO’s
assessment, those estimates are in the middle of a wide distribution of potential effects. The
effects could be smaller if expenditures in late-phase human trials are larger, for example.
Alternatively, the effects could be larger if the cost of capital is larger.
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JEL Classification: I11, I18



1 Introduction

Substantial interest surrounds policies that could have a major impact on the development
of new drugs—classified here as drugs with new active ingredients, not just a new delivery
mechanism or formulation. Most recently, the Congressional Budget Office released cost
estimates for the Elijah E. Cummings Lower Drug Costs Now Act (H.R. 3; CBO 2019a).
CBO estimated that provisions in the act requiring drug price negotiations and providing a
source of pressure on manufacturers to secure price concessions would have reduced federal
spending by $456 billion. For new drug development, CBO estimated that H.R. 3 would
have reduced global revenue for new drugs by 19 percent, leading to approximately 8 fewer
drugs introduced to the U.S. market over the 2020–2029 period (a 3 percent reduction)
and 30 fewer drugs over the next decade (a 10 percent reduction) (CBO 2019b).

In this paper, CBO describes an updated version of the model used to inform estimates
of the effects of H.R. 3 on the number and timing of new drugs entering the U.S. market.
CBO also now expects more new drugs to be introduced over the next decade under current
law. To illustrate how the model works, CBO examines a policy that reduces expected
returns of drugs in the top quintile of expected returns by 15 percent to 25 percent. That
policy is estimated to lead to 2 fewer drugs in the first decade (a reduction of 0.5 percent),
23 fewer over the next decade (a reduction of 5 percent), and 34 fewer drugs in the third
decade (a reduction of 8 percent). The appendix considers a policy that both reduces
expected returns by 15 percent to 25 percent and reduces available cash to the industry
by $900 billion. CBO calculates that the reduction in cash available increases the weighted
average cost of capital (WACC) by 20 basis points (from a discount rate of 8.6 percent to
8.8 percent). The combined effect is that 9 percent fewer new drugs will enter the market
in the third decade under the policy, increasing the size of the effect by 1 percentage point.

The paper discusses various forms of uncertainty affecting those estimates. In addition
to the uncertainty associated with the value of the model’s parameters, inherent uncer-
tainty is associated with the drug development process. Uncertainty also exists in how
manufacturers react to the major change in the government’s role in price determination.
The simulations illustrate effects by using a particular set of revenue reductions (15 percent
to 25 percent) as inputs. In later analyses, CBO expects to use inputs stemming from spe-
cific legislation that are the agency’s best estimate of the firm’s expectations about average
revenue reductions in the future; the firm’s own estimates may be larger or smaller than
CBO’s.

In the future, CBO could use the model to estimate whether and how various policies
would affect the development of new drugs. CBO may adjust the model to account for how
policies influence the process of new drug development.

This paper’s simulation approach is an alternative to directly using elasticity estimates
from the literature. Dubois and colleagues (2015) estimate an elasticity of 0.23 for policies
that change expected market size, where market size refers to the total quantity of the
competing drugs sold multiplied by the prices of those drugs. For example, if a policy
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would decrease the expected market size by 20 percent, the number of new drugs would
decrease by about 5 percent. That work updates a similar study by Acemoglu and Linn
(2004), which estimates the elasticity to be 4, corresponding to an 80 percent reduction in
the number of new drugs.1 CBO’s simulation model complements the existing literature by
parameterizing a structural model of decisionmaking in drug development. Khmelnitskaya
(2020) represents another recent example of an explicitly dynamic structural model of
decisionmaking in drug development. One advantage of those models is that they can
estimate how a policy’s impact may vary over periods longer than are generally seen in the
data.

In analyzing H.R. 3, CBO used elasticity estimates from the literature and adjusted
those over time on the basis of results from an earlier version of the model (CBO 2019b).
That analysis used an elasticity estimate that increased to its long-run average of 0.5 after
18 years. The policy example analyzed here is estimated to reduce expected returns by
an average of 18 percent, and the model results indicate that it leads to 8 percent fewer
new drugs after 25 years. That finding corresponds to a long-run average elasticity of 0.45,
about twice the size of the estimate from Dubois and colleagues (2015) and approximately
one-ninth the estimate from Acemoglu and Linn (2004).

Another way to interpret the results is to estimate average reduction in total net present
value of returns per drug lost as a result of the policy—that is, total reduction in returns as
a result of the policy divided by number of drugs lost in the long run. The estimated effect of
the illustrative policy corresponds to an average reduction in expected returns of $3.5 billion
per drug lost.2 Compare that result with that of Dubois and colleagues (2015), who claim
that their elasticity estimate of 0.23 corresponds to requiring an increase in market size of
$2.5 billion to yield one additional drug coming to market. The literature also contains net-
present-value estimates of average costs of development and average lifetime revenues per
drug. DiMasi, Grabowski, and Hansen (2016) estimate that average development costs are
$2.8 billion (including the cost of developing drugs that do not make it to market). DiMasi,
Grabowski, and Vernon (2004) argue that development costs and revenue vary substantially
across drugs. In that study, average net present value of revenue per drug varies from
$1.4 billion for analgesics to $5.5 billion for central nervous system drugs.(For consistency,
dollar estimates in this paragraph are adjusted for inflation.) The average returns value
reflects the reduction in returns throughout the distribution of drugs, whereas the revenue
estimates reflect average revenue for a given drug within a particular therapeutic class.

1Why such a large discrepancy exists between the two studies is unclear. Dubois and colleagues (2015)
uses more recent data covering the globe rather than just U.S. entry.

2This is the “slope estimate.” Slope is rise over run. Here, rise is the reduction in expected lifetime
earnings for new drugs entering the market each year in the long term. To calculate rise, the lifetime
revenue distribution presented below (Figure 2) is adjusted to represent the total revenue for those drugs
and then is used to determine the difference in total revenue with and without the policy. Run is the annual
reduction in the number of drugs in the long term, from 44 to 40. Revenues and development costs are
positively correlated in CBO’s assessment, and the affected drugs would have development costs higher
than the average cost for all drugs.
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The model is based on a stylized representation of the pharmaceutical decisionmaking
process. A firm is projected to continue development of a drug if expected returns exceed
expected costs. The model’s parameter values are derived from both estimation and cali-
bration procedures. The model uses revenue estimates calculated using nonpublic Medicare
Part D data. Those data include information on the rebates paid by the manufacturing
firms, allowing those rebates to be netted out of revenue. Using data from 2010 to 2018,
CBO estimates how drug revenue varies with time on market. CBO uses results from Di-
Masi, Grabowski, and Hansen (2016) to estimate development costs. The agency uses a Roy
model to combine information on revenue and cost. That model accounts for selection and
correlation in the observed revenue and cost data (Heckman and Honoré 1990). Although
an input into the Roy model is observed revenue, the output is expected returns. The as-
sumption of “revealed preference” is used to elicit the firm’s expectations about the value
the firm will receive from bringing the drug to market. Those expectations account for var-
ious costs associated with producing, selling, and distributing the drug—even though those
costs are not observed in the data. That said, CBO does have access to rebate information
in the Medicare Part D data and in the estimation procedure nets out manufacturer-paid
rebates. CBO calibrated entry probabilities and other parameters on the basis of results
presented in Blume-Kohout and Sood (2013), DiMasi (2013), and Khmelnitskaya (2020).

The analysis shows that any relationship between a policy change and the number of
new drugs entering the market grows over time. The change would be small for the first
few years because key decisions for drugs entering in those years would have been made
before the policy change. However, the size of that change would increase substantially as
decisions in earlier phases of development affect later phases. The estimates of Dubois and
colleagues (2015) and Acemoglu and Linn (2004) can be thought of as the effect averaged
over time.

Blume-Kohout and Sood (2013) and Dranove, Garthwaite, and Hermosilla (2020) esti-
mate how increases in market size affect drug development over time. Both papers describe
the impact of introducing Medicare Part D, called the Medicare Modernization Act. Both
research groups use pipeline data to show how increases in market size affected the num-
bers and types of drugs entering each phase of development. Both reports show that the
impact of the changes increases over time. Dranove, Garthwaite, and Hermosilla (2020) use
a longer panel and information on the novelty of the drug to show that the initial effect
is on increasing development of the least novel drugs. That paper shows that the policy
change took many years to affect the entry of the most novel drugs into various phases of
development.

Two mechanisms determine the observed change in entry into a particular phase of
development. First is an immediate change in whether a potential drug will enter one of
the three phases of development. Second are changes to the candidates available to enter a
phase of development given changes to earlier phases of development. The Blume-Kohout
and Sood (2013) estimate of a 27 percent immediate increase in phase I trials stems from
the first mechanism, and the long-term effect of a 50 percent increase stems from both
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mechanisms combined. Similarly, the authors find that the initial impact on phase III trials
is small but becomes much larger as decisions from earlier phases show up in changes in
the number of phase III trials. Dranove, Garthwaite, and Hermosilla (2020) show an initial
impact of non-novel drugs entering preclinical and clinical development; by definition, those
are the drugs available to enter development. Drugs that are more novel take longer to go
through the process, taking longer to become available for entry into the different phases.

2 Background on Drug Development

Figure 1: Evaluation and research chart of the drug development process. BLA = Biologic
License Application; FDA = Food and Drug Administration; IND = Investigational New
Drug; NDA = New Drug Application.

Drugs go through a systematic and regulated process illustrated in Figure 1. During the
initial preclinical development period, preliminary scientific research is done to determine
what type of drug may work on the disease. That period also includes studies of the drug
working in animals, potentially including those genetically modified, to help assess how the
disease affects humans. After determining an appropriate drug candidate, a company may
enter its drug in human clinical trials.

Human clinical trials generally begin with an Investigational New Drug application
to the Food and Drug Administration (FDA) or equivalent international agency. Human
trials follow a regulated and standardized three-phase process. In general, a drug candidate
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either moves to the next phase in the sequence after successfully completing the current
phase or is abandoned.

� Phase I. Small trials aimed at showing that the drug is relatively safe. Often conducted
on healthy volunteers.

� Phase II. Larger trials, including approximately 200 people with the disease. The
trials try to measure both safety and effectiveness.

� Phase III. Large trials usually necessary to gain marketing approval from FDA. Vol-
unteers are generally randomized between the proposed treatment and the standard
of care (or a placebo).

Once all trials are completed, the firm submits a New Drug Application or Biologic License
Application for FDA approval (FDA 2019).

The development process is harmonized across the globe (the United States and Euro-
pean Union, in particular, have worked to harmonize their regulations). A firm may use
the same clinical trials to get marketing approval in multiple international jurisdictions.
See Department of State (2010).

3 The Firm’s Decision Problem

In general, the key elements of the firm’s problem are decisions about whether to take the
drug through each of the three phases of clinical development. The firm’s marketing team,
economists, statisticians, doctors, and biologists meet to discuss the drug’s likely success,
revenue, and costs. The firm then decides whether beginning the next phase of trials will
be profitable.

The three decision problems are modeled similarly. However, an important distinction
exists between the earlier decisions and the phase III decision. In the earlier problem, an
“option value” is present. When making the phase II decision, the firm has an option at
phase III: Once the company completes phase II, nothing forces it to begin phase III. If
at that future point the firm expects to get negative returns, it will stop. The model takes
preclinical decisionmaking as given—that is, outside the model.

In the model, no explicit link exists between decisions in each phase of development.
When entering the new phase, the firm takes a new draw on the expected returns and
expected costs of the drug. That said, the phases are implicitly linked. The model allows
expected returns and costs to be correlated, and the results indicate that they are. In
fact, for decisions in phase II, the expected returns from entering phase III are positively
correlated with the expected costs in phase II. That is, a firm that expects high returns
from entering the future phase tends to have higher expected costs in the current phase.
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3.1 Hurdle Model

Before deciding to enter the phase (phase k ∈ {1, 2, 3}), the firm observes a signal of the
drug candidate i’s “type,” denoted θik. That signal gives the firm expectations over the drug
candidate’s likelihood of success, returns once on the market, and costs of development.
The firm will enter the phase of development if net expected returns are positive conditional
on the observed signal.

The firm will enter phase k with drug candidate i if and only if the following inequality
holds:

E(yikR
∗
ik − C∗

ik|θik) > 0 (1)

where yki ∈ {0, 1} indicates whether the drug candidate will successfully complete the
phase, R∗

ki are the expected returns associated with successfully completing the phase, and
C∗
ki are the expected costs associated with entering the phase. Equation (1) states that

the firm will enter the phase if and only if the expected returns exceed the expected costs.
The asterisk means that those values are not necessarily observed in the data set. The
identification and estimation issues are discussed below.

3.2 Dynamic Model

Each decision is linked in that the following relationship holds:

R∗
i(k−1) = E

(
max{0, yikR∗

ik − C∗
ik}|θi(k−1)

)
(2)

Conditional on the observed signal (θi(k−1)), the decisionmaker knows both the expected
costs and the expected return of the current phase, where the second value includes the
expected costs of the next phase. That said, the decision in the next phase is based on a
new draw of the signal. A drug expected to get a low return in phase II may end up having
a high return in phase III. In the notation above, the signal at the beginning of phase k−1
(θi(k−1)) is independent of the signal at the beginning of the next phase (θik). Although
that parameterization is less realistic, it substantially simplifies modeling and estimation.

Note also that expected net returns from the next phase may be negative. Expected
costs of the phase may exceed expected returns from entering the phase. However, the
firm knows that it does not have to enter the phase if net expected returns are negative.
Entering phase k − 1 has an option value. The firm can choose not to take the drug into
phase k if information available at that time suggests the drug will be unprofitable.

3.3 Simulation Model

The simulation includes a static part and a dynamic part. The static part simulates the
decision to enter a particular phase of development. That part takes the number of available
drug candidates as given and determines which will enter the next stage of development.
The dynamic part simulates the interaction of the static decisions. That part accounts for
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how decisions made in earlier development stages affect the number of available candidates
in later stages. The dynamic part also models the time candidates take to become available
for the next stage.

The static decision considers three values of interest for drug candidate i entering
phase k: whether the drug will successfully complete the phase, yik; expected return from
completing the phase, R∗

ik; and expected costs of entering the phase, C∗
ik. The simulation

proceeds by drawing those three values for many pseudo–drug candidates for each phase
of development.

In the model, yik is independent of the other two values. That independence implies
that the parameter pik = Pr(yik = 1) can be directly estimated from drug development
pipeline data such as those presented in DiMasi, Grabowski, and Hansen (2016).

In the model, the other two values are distributed by bivariate distribution.

{log(R∗
ik), log(C∗

ik)} ∼ F (µrck, σrck, ρrck) (3)

where µrck is a vector of the mean of the expected log return and the mean expected log
costs, σrck is the equivalent vector for standard deviation of log expected returns and log
expected costs, and ρrck captures the correlation across expected returns and costs. The
bivariate distribution (F) is given by a Gaussian copula function where the expected cost
marginal is a log-normal and the expected return marginal is a log-gamma distribution.
The gamma distribution can capture the skewness of the data. As discussed below, the
parameterization allows the distribution to be estimated with the data available.

The full simulation model is dynamic. At each period (a year), a set of candidates
is available to enter each of the three phases of development. For each candidate, the
values described above are drawn and used to determine whether the candidate enters the
development phase. That decision, and the probability that the candidate will successfully
complete the phase, determines whether the candidate is available to enter the next phase.
Drug candidate i’s time in phase k is represented by tik. As with other values, that time
is assumed to be distributed log-normal and determined by parameters µtk and σtk. The
amount of time and the expenditure (Eik) in the development phase are modeled using
a bivariate log-normal distribution, where {log(tik), log(Eik)} ∼ N (µtek,Σtek), µtek =
{µtk, µek}, and

Σtek =

[
σ2tk ρtekσtkσek

ρtekσtkσek σ2ek

]
(4)

is the variance–covariance matrix for observed time in development and expenditure in
development. In general, those values are observed and taken from survey data presented
in DiMasi, Grabowski, and Hansen (2016). Those two bivariate distributions are related
through the interaction between expected costs of development and observed expenditure
in development.
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4 Identification

The model of the firm’s decision problem has several key inputs: estimates of success
probabilities, expected development costs, expected time in development, financing costs,
and expected returns. Because CBO doesn’t observe all those values, the agency calibrates
some parameters of the model and estimates others with restrictive parameterizations. This
section discusses identifying and estimating the joint distribution of expected returns and
costs for each phase of development.

4.1 Roy Model

CBO uses information from two sources to estimate parameters of the model. For expected
returns, the agency uses Medicare Part D data that describe what is paid to manufacturers
of individual drugs over their lifetime. Those data include confidential information on
rebates paid by manufacturers. For costs, CBO uses results from a survey of pharmaceutical
manufacturers reported in DiMasi, Grabowski, and Hansen (2016).

Two concerns arise from using that information to estimate the parameters. First, ex-
pected returns and expected costs are not observed as a pair for each drug candidate.
Rather, CBO observes the marginal distribution of returns for one set of drug candidates
and the marginal distribution of costs for another set. Second, the data set suffers from
selection bias. CBO doesn’t observe expected returns for drug candidates under consider-
ation to enter development. Instead, the agency observes returns for drugs that actually
entered and later completed development and then entered the market. Both problems
are solved by modeling how observed distributions are related to distributions of interest
through the decision problem presented above. In particular, this working paper uses a
parametric Roy model to identify the joint distribution of expected returns and expected
costs (Heckman and Honoré 1990).3

Consider a simple version of the problem, with one data set in which expected returns for
drugs take on two values, high and low. In a second data set, expected costs for developing
drugs take on two values, high and low. Those two data sets contain only returns and
costs for drugs that enter development. (For simplicity, assume that returns and costs are
observed for all drugs that enter development.) For the firm, eventual returns and costs
are known before deciding to take the drug candidate into development, which occurs only
if expected returns exceed expected costs.

If the cost data set describes the proportion of drugs with high costs, what can be
learned about returns for those drugs? They must have high expected returns. If not, the
drugs wouldn’t be observed in the data set. If the cost data describe drugs with low costs,
what can be learned about expected returns for those drugs? Not much, because drugs
with low costs would be developed, and appear in the data, for both high and low expected

3In the standard parametric Roy model, the econometrician observes the marginal distributions of out-
comes in the two sectors, relative prices and the market share of the two employment sectors.
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returns. Because their costs are low, those drugs are observed in the data set regardless
of expected returns. If the returns data set describes the proportion of drugs with low
returns, what can be learned about costs? Those drugs must have low expected costs.
Again, otherwise the drugs wouldn’t be observed in the data set. However, observing the
proportion of drugs with high returns does not allow inferences about expected drug costs.
Those drugs enter development with both high and low expected costs.

The two data sets describe the proportion of drugs with high costs and high returns
as well as the proportion of drugs with low costs and low returns. Given that and with
knowledge of the proportion of drugs that enter development, the two data sets can be
used to infer the proportion of drugs with high costs and low returns and the proportion of
drugs with low costs and high returns. In that simple problem, the returns and cost data
sets supply enough information to determine all the joint probabilities even though neither
data set includes both returns and costs for any particular drug.

In the more general model, there exists an expected return R∗
i and an expected cost C∗

i

and a decision problem in which the firm enters if and only if R∗
i −C∗

i > 0. Let Ri and Ci

represent observed values for returns and costs. By assumption, those values are observed
only if the profitability condition holds. Moreover, those observed values are the expected
values known to the firm at the time of the choice.

Ri =

{
R∗

i if R∗
i − C∗

i > 0
− otherwise

Ci =

{
C∗
i if R∗

i − C∗
i > 0

− otherwise

(5)

In addition, CBO observes the probability of entering Pr(R∗
i − C∗

i > 0) = π.
Heckman and Honoré (1990) show that this model is not nonparametrically identified

unless the “price” changes.4 Here, the “price” is 1 and does not change. That paper also
shows that requiring the distribution to be a bivariate normal allows the parameters to
be identified. Given that result, CBO uses a similar distribution for {R∗

i , C
∗
i }.5 Following

the approach of Heckman and Honoré (1990), CBO assumes that expected returns and
expected costs observed by firms are equal to observed returns and costs after the filtering
process is accounted for.6

The model used below is more complicated. In particular, the joint distribution has
four marginals: success rate, returns, costs, and time in development. Given that, several

4In the original example, the price is the relative wages in the two sectors.
5In the actual Roy model, the econometrician observes Ci when R∗

i − C∗
i < 0.

6Heckman and Vytlacil (2007) discuss identification issues with a more general model that allows dif-
ferences between values observed by the firm and values observed in the data. In the policy simulation
presented below, CBO considered a robustness check wherein the firm observes an additional signal about
the relative profitability of the drug candidate. Though not presented, those results show that the impact
of the policy is attenuated.
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restrictions are placed on the model. The success probabilities for each phase are assumed
to be independent of the other factors. Moreover, phase success rates observed by the
decisionmaker are assumed to be equal to observed success rates presented in DiMasi,
Grabowski, and Hansen (2016).

In addition, the observed costs are the capitalized expenditures. Those values are deter-
mined by expenditures during the phase, time in the phase, and a discount rate. Therefore,
CBO needs to estimate the joint distribution of expenditures and time in development.
DiMasi, Grabowski, and Hansen (2016) present the marginal distribution for expenditures
and time, not the joint distribution. As a result, CBO calibrates the correlation across
expenditures and time, comparing results with those presented in DiMasi, Grabowski, and
Hansen (2016). See discussion below.

4.2 Capitalized Expenditures

DiMasi, Grabowski, and Hansen (2016) describe the actual expenditure in each phase of
development by drug. But those amounts do not account for actual costs of development
because they don’t account for the opportunity cost of the money. Money invested in
human clinical trials for a particular drug candidate could have been invested in some
other project.

Capitalized expenditures are calculated in two steps. First, expenditures are assumed
to be uniformly spread out over the period. That spread is approximated by rounding time
in phase to the nearest year and assuming that equal fractions are spent at the beginning
of each year. Those amounts are discounted to the end of the phase and summed. Second,
capitalized expenditure in the phase is discounted to the expected time of entry on the
market.

All dollar amounts are discounted to the point where the drug enters the market. That
discounting is done to correctly compare various expenses that occur during the drug’s
development process and the returns that the drug receives while on market.

Cik =

(
tik−1∑
t=0

(
Eik

tik

)
(1 + β)tik−t

)
(1 + β)Ti(k+1) (6)

where Eik is the observed expenditure of drug i in phase k, β is the discount rate (time cost
of money), tik denotes time in phase k, and Tik denotes time to market from the beginning
of phase k.

Again, CBO doesn’t observe the joint distribution of expenditures and time in de-
velopment. Therefore, the agency uses a log bivariate normal distribution and calibrates
the correlation parameter to other statistics presented in DiMasi, Grabowski, and Hansen
(2016). In particular, those authors summarize the actual expenditure, time, and capital-
ized expenditures in the phase. With the discount rate that study used, the correlation
parameter is the one that most closely matches the summary statistics presented in the

10



paper.

5 Data

The model uses two main sources of data. Returns data come from Medicare Part D
expenditures on brand-name drugs. Cost information comes from DiMasi, Grabowski, and
Hansen (2016).

5.1 Estimates of Returns

To estimate the model, CBO needs estimates of the distribution of returns for drugs entering
the U.S. market. To do that, CBO uses Centers for Medicare & Medicaid Services data
on Medicare Part D expenditures from 2010 to 2018. That data set includes confidential
information on manufacturer-paid rebates, allowing them to be netted out. Those drugs are
a convenience sample. They also are relevant to policy proposals of interest. Unfortunately,
that data set does not describe returns from the rest of the U.S. market or the global
market. Therefore, CBO calculated Medicare Part D’s share of global revenue and then
used that percentage to estimate annual global revenues for each drug. That estimating
approach implicitly projects that the proportion of drugs with large returns (and small
returns) is the same in Part D and globally. That approach does not, however, require
an assumption that a given drug’s share of revenue is the same in Medicare Part D and
globally. Rather, the shape of the distribution is what matters.

CBO regresses returns on a polynomial of age, the number of years since the launch of
the drug in the United States.

rit = α1(t− t0i) + α2(t− t0i)2 + α3(t− t0i)3 + υit (7)

In that equation, t0i is the launch year of drug i, rit is the observed returns of drug i in year
t, and υit are unobserved characteristics of drug returns. Equation (7) is a cubic without
an intercept term. The actual regression also includes a time trend for the year in which
returns are observed.

The cubic parameterization is used to capture drug life-cycle returns. Returns tend to
start low as prices and market share are low and then increase as both go up over time.
Returns then start to fall as older drugs face greater competition from the entry of brand-
name and generic drugs (DiMasi, Grabowski, and Vernon 2004; Bhattacharya and Vogt
2003). To estimate equation (7), CBO combines the data set for returns with information
on the launch date of the drug. (Returns data are calculated at the ingredient level.) To
estimate a distribution of returns, CBO uses quantile regression. Coefficient estimates and
implied revenue by year and percentile are available in supplemental data posted with this
working paper. To compare costs and returns on the same basis, each drug’s returns are
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discounted back to date of launch. CBO uses a discount rate of 8.6 percent (Damodaran
2020).7

Figure 2: Lifetime revenue for Medicare Part D drugs is heavily skewed. Using data from
2010 to 2018, CBO finds that some drugs earn less than $10,000 (4 percent), most earn
more than $1 million (81 percent), and only a few earn more than $10 billion (7 percent).

Figure 2 presents the distribution of discounted lifetime global returns associated with
successfully getting a drug to market. That distribution is based on the quantile regression
estimates above.

5.2 Estimates of Expenditures

CBO doesn’t have access to any similar database to estimate expenditures associated with
bringing a drug through the development process. Therefore, CBO relies on information
reported in DiMasi, Grabowski, and Hansen (2016) from a survey of 10 multinational
firms of various sizes. The authors selected a sample of about 100 drugs and requested
information about their associated expenditures in each stage of development. Those drugs
began human testing somewhere in the world between 1995 and 2007. Their paper and

7The measured discount rate was substantially lower for the January 2021 release of the data, perhaps
because of temporary factors related to the coronavirus pandemic.
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related papers further discuss the survey design. Development expenditures used here do
not include expenditures associated with marketing or postmarket studies.

Phase Mean Median SD

I 25.3 17.3 29.6
II 58.6 44.8 50.8
III 255.4 200.0 153.3

Table 1: Expenditure distributions in millions of dollars for each phase, from DiMasi,
Grabowski, and Hansen (2016). SD = standard deviation.

Table 1 shows a skewed distribution of expenditures. In the supplement to their 2016
paper, DiMasi, Grabowski, and Hansen present fitted log-normal distributions for expen-
ditures and time in phase.

As mentioned, to estimate capitalized expenditures of drug development, CBO needs
to know the joint distribution of expenditures and time in development. That information
is not presented in DiMasi, Grabowski, and Hansen (2016). Therefore, CBO calibrates the
correlation parameter by using various measures of distributions of expenditure and time in
development presented in the paper. The calibration exercise gives a correlation coefficient
of −0.5. As with other parameters, sensitivity around that value is discussed and tested
below.

Concern exists that survey results of expenditures presented in DiMasi, Grabowski, and
Hansen (2016) are not representative of drugs in development. In Adams and Brantner
(2006) and (2010), the authors use publicly available data and compare estimates with
those in DiMasi, Hansen, and Grabowski (2003), which used a similar analytic method to
that in DiMasi, Grabowski, and Hansen (2016). Using development times and transitions
from Pharmaprojects and R&D expenditure from Securities and Exchange Commission
filings, Adams and Brantner present results broadly similar to those in DiMasi, Hansen,
and Grabowski (2003). CBO doesn’t use the discount rate presented in DiMasi, Grabowski,
and Hansen (2016); rather, the agency uses the WACC for pharmaceutical and biotech
industries suggested by Damodaran (2020).8

5.3 Other Observed Distributions

As inputs, the model also uses estimates for success rates of drugs through clinical trials and
amount of time spent in each phase. Here CBO uses reported results in DiMasi, Grabowski,
and Hansen (2016). Those numbers are from a sample of more than 1,400 drug candidates
initially tested in humans between 1995 and 2007. Similar results are presented in Wong,

8Data used to calculate the WACC were from the January 2020 update. As with other measures, the
sensitivity of the results to that parameter value is discussed more below.
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Siah, and Lo (2019) for more than 15,000 candidates in development between 2000 and
2015.

In addition, CBO sets the probability of entering each phase of development to .1, .2,
and .9 for phases I, II, and III, respectively. Those numbers are chosen mostly because
they lead to feasible results. CBO doesn’t have access to information on which drugs
are available to enter a particular phase but are not doing so. Because of concern about
those values, this working paper presents information on how much the estimates vary if
those values change. A survey by DiMasi (2013) asked whether the failure of the drug in
development was due to safety, efficacy, or commercial reasons. He found that commercial
reasons were less prominent in later phases than in earlier phases, a pattern consistent
with the assumption. In recent work, Khmelnitskaya (2020) found that 8.4 percent of all
attrition is strategic.

6 Estimation

The object of interest is the joint distribution of expected returns and expected costs
({R∗

i , C
∗
i }). However, because CBO cannot observe those values, the agency observes val-

ues that have gone through the decisionmaking “filter” described above, {Ri, Ci}. To esti-
mate model parameters, CBO solves a simulated generalized method of moments (GMM)
problem.

GMM is a generalization of a standard least squares problem. A moment is the term
used to describe the average of some set of values raised to a power. The first moment is the
average of values to the power 1, the second moment is the average of values to the power
2, and so on. Consider the problem of finding the average in a sample. In expectation,
the difference between the sample value and the average is zero. Alternatively, the average
in the sample is where the first moment is zero. Similarly, the sample variance is where
the second moment is zero (when the average is zero). Different moments characterize
different aspects of the distribution. The problem is that with multiple moments, potential
exists to have multiple estimates of the same parameter. The question thus arises about
which estimate to use or how to average across various estimates. Hansen (1982) presents
properties of a particular method of weighting across moments, the GMM.

Because CBO can’t observe the underlying joint distribution of expected costs and
expected returns, the agency must simulate it. Firms decide whether to enter simulated
drugs into development. Simulated expected costs and expected returns for drugs that go
into development are then compared with those that are observed.

6.1 Simulated GMM

The estimator works through a choice of the five parameters—{µrk, σrk, µck, σck, and ρrck}—
that characterize the distribution of expected returns and costs ({log(R∗

ik), log(C∗
ik)}).

Given that choice, the estimator simulates many expected return and expected cost pairs.

14



It then takes those that satisfy the condition that net expected returns are positive (equa-
tion (5)) and compares them with the observed moments. CBO uses the first and second
moments of the distribution of log expected returns, the first and second moments of dis-
tribution of log costs, and the probability of entering the phase.

1
N

∑N
i=1 log(Rik)−mrk = 0

1
N

∑N
i=1(log(Rik)−mrk)2 − s2rk = 0

1
N

∑N
i=1 log(Cik)−mck = 0

1
N

∑N
i=1(log(Cik)−mck)2 − s2ck = 0

1
N

∑N
i=1 1(R∗

ik − C∗
ik > 0)− πk = 0

(8)

where mrk is the observed mean of log returns for phase k, srk is the observed standard
deviation of log returns for phase k, and πk is the observed probability of entering phase k.
Although CBO observes {mrk, srk,mck, sck}, the agency does not observe πk. That value
is calibrated in the estimates below. Also note that 1() is an indicator function that is 1 if
the expression inside the function is true and zero otherwise.

The GMM problem does not depend on the phase. However, inputs into the function
will change with the different phases. In particular, estimates for earlier phases take results
from later phases as given.

Ri(k−1) = max{0, R∗
ik − C∗

ik} (9)

Equation (9) states that “observed” returns in the earlier phase are determined by net
expected returns in the latter phase. That distribution is censored at zero because the firm
has the option of not taking the drug candidate into the latter phase of development.

6.2 Parameter Estimates

Table 2 presents parameter estimates and observed moments for the simulated GMM es-
timator. Results show that the distribution of expected returns and costs faced by the
decisionmaker and the observed returns and costs in the data. On average, expected costs
tend be lower. The heavily skewed expected returns are lower in the earlier phases but
higher in phase III. Finally, expected returns and expected costs are positively correlated.

Table 3 presents the mean and standard deviation for parameter estimates after the
model was rerun 500 times with variation in moment estimates and calibrated parameters.
Given the bootstrap procedure used, the mean is not necessarily equal to the main param-
eter estimates presented in Table 2. The table shows a large amount of parameter variation
for expected returns distribution in phase III. The main results of the policy illustration
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Phase Variables µ m σ s ρ π Log Shift

I Revenue 1.14 9.59 4.18 10.80 0.93 0.10 −1.00
Cost 2.68 3.35 0.64 0.94 −5.36

II Revenue 2.80 8.26 6.70 10.49 0.82 0.20 −1.00
Cost 4.05 4.43 0.62 0.75 −15.54

III Revenue 5.53 4.70 9.05 3.21 0.98 0.90 −1.00
Cost 3.69 5.36 7.09 0.93 −9.97

Table 2: Parameter estimates and moments from the simulated generalized method of
moments estimator. Estimated distributions of expected costs and expected returns are
represented by a mean of µ and standard deviation of σ. Expected returns are distributed
log-gamma and expected costs are distributed log-normal. The correlation across expected
costs and expected returns is represented by ρ. The mean and standard deviation of ob-
served costs and returns are represented by m and s, respectively. The probability of
entering the phase of development is π. The “Log Shift” column refers to the fact that
observed distribution is shifted up to use logs. Using logs simplifies the estimation, but the
values must be shifted to avoid zeros or negative numbers.

Phase Variables µ σ ρ
Mean SD Mean SD Mean SD

I Revenue 1.70 0.99 7.92 2.45 0.83 0.19
Cost 2.48 0.35 0.77 0.06

II Revenue 2.96 0.87 10.71 5.05 0.83 0.07
Cost 3.91 0.21 0.68 0.06

III Revenue 6.94 7.58 13.42 21.37 0.98 0.01
Cost 3.52 1.39 8.29 4.33

Table 3: Variation in parameter values as a result of uncertainty. Estimated expected cost
and expected returns distributions are characterized by the following parameters: mean, µ;
standard deviation, σ; and correlation, ρ. Mean and standard deviation (SD) of parameter
estimates are based on sampling uncertainty associated with expected costs and expected
returns estimates and on variation in assumed parameter values, such as probability of
entering the trial.
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presented below are based on estimates presented in Table 2, although variation around
entry effects is presented in section 8.

As discussed further below, uncertainty over the estimates comes from several sources.
One concern is that uncertainty is associated with sampling variation in both the returns
estimates from the Centers for Medicare & Medicaid Services data and the cost and du-
ration estimates from DiMasi, Grabowski, and Hansen (2016). A second concern is that
several parameter values were set using limited information.

7 Policy Impact: An Illustration

A range of policies could be analyzed. In particular, any policies that significantly affect
expected returns or expected costs for new drugs may lead to changes in the number of
drugs that get to market.

To illustrate how the model works, CBO considers a policy that significantly reduces
expected returns of drugs in the top 20 percent of expected returns. That is, drugs expecting
to land in the top quintile would generate expected returns 15 percent to 25 percent
less than without the policy. That is a representative policy that affects expected returns
similarly to the one proposed in H.R. 3. The policy then required the Secretary of Health
and Human Services to negotiate drug prices and prioritize drugs to areas where the impact
would be greatest. The bill also capped the price at which parties could negotiate. The price
could not exceed 120 percent of an international price index. CBO estimated that the policy
would decrease future global revenue for new drugs by 19 percent (CBO 2019a, 2019b).

In the main analysis, this working paper considers how a policy that reduces expected
returns for the drug affects new drug development. The appendix considers an additional
impact of a policy that reduces the cash available to invest in new drug development.

7.1 Impact on Phase III Decisions

CBO assumes that the policy’s impact is increasing over the distribution of expected re-
turns. At the top end of the distribution is a 25 percent reduction in expected returns.
That reduction falls to 15 percent for a drug expected to be at the 80th percentile and
then to zero reduction in expected returns below the 80th percentile.

Figure 3 illustrates the impact of the policy. Expected returns are not affected for any
drug below the 80th percentile. The figure shows that the policy has a small impact on the
number of new drugs entering phase III. The policy affects only a few drugs on the margin
between entering and not entering phase III. Only a few simulated drugs are near the line,
and the change in expected returns is not large enough to have many drugs cross that line.
CBO estimates that the policy is associated with a 0.6 percent decrease in the number of
drugs entering phase III—that is the immediate impact. Below, this paper discusses the
longer-term impact of decisions made earlier in the R&D process.
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Figure 3: The policy slightly reduces the number of drugs entering phase III (a 0.6 percent
decrease). The figure shows the joint distribution of expected returns and costs with (red
dots) and without (X marks) the policy. Only drugs above the 40th percentile of expected
returns are included; for those drugs, the policy leads to a shift down in expected returns
(X mark → red dot). Using the log scale, the figure shows a shift in expected returns
from $10 billion to $7.5 billion, for example, as the difference between 23.03 and 22.74—a
difference of 29 log points. The gray line represents the break-even point. Simulated drugs
above and to the left of the line have expected returns greater than expected costs and
would enter phase III. For a small proportion of drugs, the baseline expected returns place
them above and to the left of the line, but expected returns with the policy in place are
below and to the right of the line. Those drugs would not enter phase III.
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7.2 Impact on Phase II Decisions

The impact of the policy on phase II decisions is filtered through the phase III decision
process. The first step is to determine the effect of the policy on the net expected returns
for phase III (expected returns less expected costs) from successfully completing phase II.
Comparing the distribution of net expected returns with and without the policy, CBO
finds a 25 percent reduction in expected returns for drugs with net expected returns above
the 90th percentile, a 20 percent decrease for drugs with net expected returns between the
75th and 90th percentiles, and a 5 percent decrease for drugs with net expected returns
below the 75th percentile.9

Figure 4 presents the impact of the policy on the distribution of phase II expected
returns and costs. The policy causes expected returns to fall. Sometimes that fall is enough
to move the drug from above to below the 45-degree line. The figure shows that the policy
affects more marginal drug candidates. Here it leads to an immediate 3 percent decrease
in the number of drugs going into phase II.

7.3 Impact on Phase I Decisions

For phase I decisions, the impact of the policy is filtered through the decision problems for
both phase II and phase III. When the net expected returns with the policy are compared
with net expected returns at the baseline, the policy is associated with a 25 percent decrease
in expected returns. That effect leads to an immediate 4 percent reduction in the number
of drugs entering phase I.

7.4 Impact of the Policy Over Time

Figure 5 shows that the impact of the policy initially grows before leveling out. The policy
is estimated to reduce the number of drugs coming to market. A 0.5 percent decrease
occurs in the first decade under the policy, a 5 percent decrease in the second decade, and
an 8 percent decrease in the third decade.

The changes over time in the simulated impact of the policy are partly due to two effects.
First, the model allows firms to remove drugs already in development if the reduction
in expected returns falls below the costs associated with remaining in the development
phase. Second, in the model, the policy affects the number of drugs entering each phase of
development. The analysis above shows that the policy has little effect on drugs entering
phase III, with larger effects on the number of drugs entering phases II and I. Those
decisions further back in the development process accumulate over time, with fewer drugs
moving from phase I to phase II and then fewer still moving into phase III.

9CBO does not explicitly estimate those findings; rather, they are assumed based on observed changes
from the simulations.
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Figure 4: The policy would have a greater effect on a firm’s decision to enter a drug into
phase II, decreasing the number of drugs entering phase II by 3 percent. Black X marks
represent a simulated drug’s expected costs and returns at the baseline, whereas red dots
indicate the same drug’s expected cost and returns with the policy. The figure includes only
drugs above the 50th percentile of expected returns; for those drugs, the policy leads to a
shift down in expected returns (X mark → red dot). Using the log scale, the figure shows
a shift in expected returns from $10 billion to $7.5 billion, for example, as the difference
between 23.03 and 22.74—a difference of 29 log points. A larger proportion of drugs is
affected by the policy than in phase III, causing more drugs to move from above and to
the left of the line to below and to the right of the line.
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Figure 5: The policy would not affect the number of drugs entering the market in the short
run but is expected to have long-run implications. The policy is implemented in year zero,
but the full difference is not reached until after year 20. To illustrate, the number of new
drugs is initially set at the average for 2015–2019.

8 Uncertainty

The results presented here are uncertain. Uncertainty exists around both the values of
inputs used in the simulation model and the impact of the illustrative policy. Using the
illustrative policy, the section shows how uncertainty over the model’s input values and
inherent uncertainty in the simulation affect predictions of the policy’s impact on the
number of new drugs. For example, if the WACC is higher, the policy has a larger effect
on the number of new drugs. Conversely, if expenditures in phase III are higher, the policy
has a smaller effect on the number of new drugs.

The distributions shown in Figure 6 account for uncertainty over the exact value of
parameters set by CBO and uncertainty over the exact value of parameters estimated
outside the simulation model. For input values set by CBO, a uniform distribution of
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values is used, ranging from a “small” decrease to a “small” increase in the parameter
value. The exact size varies, but for probabilities it is generally 10 percentage points. For
estimates coming from distributions presented in DiMasi, Grabowski, and Hansen (2016), a
bootstrap procedure is used in which the sample size is the one equal to the survey sample
size for each phase. For estimates of returns, the quantile regressions are bootstrapped.10

Figure 6: The policy’s impact decreases as the drug moves from phase I to phase III.
The uncertainty over the policy’s impact is much higher for phase I and phase II than
for phase III. One reason is that earlier phases use estimates from later phases. That is,
estimates for the impact on phase I and II entry incorporate the uncertainty for the impact
on phase III entry.

In this paper, CBO estimates that the policy would lead to an immediate decrease in
the percentage of drugs entering each phase of development. Figure 6 presents distributions
for those estimates. For phase III, the estimated impact of the policy is very small, and the

10A set of parameters estimated in DiMasi, Grabowski, and Hansen (2016) are treated as set outside the
estimation procedure used here. Those are the probabilities of completing each phase and the duration from
the end of the phase to market.
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figure shows that variation around the estimate is relatively tight. The policy’s effect on
entry into phase II and phase I is larger, as is variation around the estimate. That greater
variation occurs at least partly because more estimated parameters are associated with
those values. The policy’s impact on phase II entry is determined by how the policy affects
the distribution of expected returns and how that change is filtered through the phase III
decision problem.

Figure 7: The policy reduces the average number of drugs entering the market, but sub-
stantial year-to-year variation occurs. In 10 simulations, after year 5 the number of new
drugs per year with the policy (red dots) starts to diverge from the number of new drugs
without the policy (X marks). Boldface symbols represent the average number across the
simulations.

Figure 7 presents average and individual year simulations. Uncertainty exists in the
simulations because movement through the process is based on draws from distributions
and individual success rates for each phase. The figure presents 10 of 100 simulations.
The figure illustrates just how much uncertainty is generated naturally. Black X marks
represent the number of new drugs entering the market under the baseline policy. The
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X marks are spread out in a large cloud, indicating that the simulation model produces a
large amount of variation in the number of drugs entering the market from year to year.
Red dots represent the number of new drugs entering the market under the policy. Again,
the cloud of red dots indicates a large amount of variation from the simulation. The figure
shows that although on average the policy leads to fewer drugs entering the market, for
any particular year the same, fewer, or more drugs could enter the market under the policy
in comparison with the baseline. Whereas the policy tends to reduce the number of new
drugs entering the market, the natural variation may lead to an increase in the number
of new drugs entering the market in any particular year. In the middle two-thirds of the
simulations (that is, between the 17th and 83rd percentiles), the reduction in the number of
new drugs entering in the third decade after implementation of the policy ranges between
21 and 59. Because of uncertainty about the modeling framework itself, CBO expects that
the range in which two-thirds of future outcomes would fall is wider than that from those
simulations alone.

9 Conclusion

This working paper describes a model CBO uses to inform its estimates of how various
policies affect development of new drugs. The model considers the firm’s decision at the
start of the various phases of human clinical trials. The firm considers expected cost and
expected returns of entering the phase. The paper considers what happens when a policy
is introduced that reduces the top quintile of expected returns by 15 percent to 25 percent.
Using the model, CBO estimates that such a policy would reduce the number of drugs
entering the market by 0.5 percent in the first decade under the policy. Owing to an
accumulated effect through the phases, CBO estimates the number of drugs entering the
market decreases by 8 percent in the third decade under the policy.

The illustrative policy’s exact implications for the health of families in the United States
are unclear. CBO has estimated neither which types of drugs may be affected nor how the
reduction in the number of new drugs will affect health outcomes. In addition, the policy
may lead to lower prices and increased usage for drugs already on the market. CBO has
not determined the overall effect of the policy on health outcomes.

10 Appendix: Accounting for Reduced Earnings

In the preceding analysis, the Congressional Budget Office assumes that a policy such as
the negotiation policy in H.R. 3 affects pharmaceutical development only through changes
to the expected profitability of new investments at a fixed cost of financing. By reducing
the earnings available to pharmaceutical firms to finance new development without tapping
external sources, the policy conceivably could raise their cost of financing, further affecting
drug development. Large drug companies are profitable enough now to finance R&D almost
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Figure 8: A small additional reduction occurs in the number of new drugs entering the
market when higher financing costs associated with the policy are taken into account.

entirely by retaining earnings from existing sales of drugs and do not need to tap external
sources.

This section considers a policy that both reduces expected returns by 15 percent to
25 percent for the top 20 percent of drugs and reduces revenue to the industry by $900 bil-
lion.

One way to capture the possibility of higher financing costs is to calculate the weighted
average cost of capital (WACC) that determines the discount rate used in this analysis.
A policy that reduces revenue by $900 billion significantly affects earnings and thus the
equity value of firms in the industry, raising their debt-to-equity ratio. Had the industry
been at its optimal debt-to-equity ratio before introduction of the policy, CBO expects,
firms would have taken measures to adjust the ratio back down toward the previous level.

One such measure would be to finance new projects with a greater proportion of equity
rather than debt. Firms also could lower or suspend dividends to pay off some of their
maturing debt, or issue new equity, but those approaches might be costly. To capture the
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impact of that change on the firm’s financing strategy, CBO reweights the cost of debt and
equity in determining the industry WACC for the projection period. The original value
weights the equity financing costs of 9.4 at 87 percent and the debt financing costs of 4.4
at 13 percent. The new weights would be 92.5 percent and 7.5 percent, respectively, where
those are determined by adding $900 billion to the observed equity financing levels in the
industry. That weight on equity financing may be too large, but the result can be thought of
as an upper bound on the likely effect of alternative financing. That reweighting increases
the estimated WACC by 20 basis points, from 8.6 to 8.8 percent.

A higher WACC would have two effects. First, it would reduce expected returns from
getting the drug to market because the initial years on the market generate less revenue
than later years. Second, it would increase the cost of spending money on drug development.
Figure 8 shows that accounting for financing costs reduces the number of new drugs entering
the market by 9 percent in the third decade under the policy, compared with 8 percent in
the main analysis.
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