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Introduction

ANDREW H. BRIGGS

Health economic evaluation has come of age. There are few
industrialised countries that do not now recognise the importance for
decision-making of evidence on the cost-effectiveness of
interventions. Cost-effectiveness evidence is not a formal regulatory
requirement in the licensing of new medications. But it is clear that
bodies such as the National Institute for Clinical Excellence (NICE) in
the UK, the Canadian Coordinating Office for Health Technology
Assessment (CCHOTA) and the Pharmaceutical Benefits Advisory
Committee (PBAC) in Australia are part of a general trend towards the
direct use of cost-effectiveness information to decide on health care
interventions for routine clinical practice.

In the early days, many health economic evaluations proceeded by
synthesising the results of published studies available in the literature.
But as a consequence of the increased interest in cost-effectiveness
evidence, it is now common to find economic variables collected
prospectively alongside clinical trials.

The existence of patient-level data on both costs and effects of
interventions generated by such studies has naturally led to an
increased interest in the use of statistical methods to analyse the data.
While many of the issues faced in analysing cost-effectiveness data are
similar to those when analysing clinical data, cost-effectiveness
analysis generates a number of particular challenges that mean new
methods have had to be developed.

Methodological development over the last decade has been rapid,
with many alternative techniques having been suggested for
economic evaluation, not all of which have stood the test of time. As
a result, the recent literature on the topic of statistical methods for
cost-effectiveness analysis is something of a minefield, with the state
of the art such that what was once considered acceptable in terms of
analysis may no longer be considered appropriate. Furthermore, the
recent nature of many developments means that not all have yet been
captured in popular textbooks in this area.
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The purpose of this book is to bring together a collection of papers
by acknowledged experts in the field of trial-based health economic
evaluation to provide an overview of the literature. The aim is to give
the reader a clear guide to recent developments in statistical methods
applied to health economic evaluation, together with the intuition
behind the use of those methods, but without detailed technical
exposition. The hope is that in doing so, interested readers will be
guided to the most appropriate methodological contributions of
recent years.

In Chapter 2, Andrew Willan outlines the standard approach to the
statistical analysis of uncertainty in cost-effectiveness studies. He
focuses on the assumption of joint normality between costs and
effects, which underlies both the Fieller and net benefit solutions to
the presentation of uncertainty. Andrew Willan goes on to show how
the methods can be adapted in the presence of censoring.

In the next chapter, Ben Van Hout addresses the common problem of
sample size calculations. It is still rare for health economists to be
invited to contribute to sample size calculation in clinical trials. Ben
Van Hout argues forcibly that while it is technically possible to
produce such calculations, in practice the number of unknowns at the
design stage of a health economic evaluation mean that final
calculations are very sensitive to the underlying assumptions.

The next two chapters address the same design and analysis issues but
from a fundamentally Bayesian perspective. In Chapter 4, Daniel
Heitjan argues that the decision-making perspective of health
economic evaluation is naturally Bayesian. This is evidenced by the
common labelling of acceptability curves as showing the probability
of the intervention being cost-effective, even when the analysis has
been undertaken using standard frequentist methods. Daniel Heitjan
argues that only a Bayesian perspective can give this desired
interpretation of the results of cost-effectiveness studies. Tony
O’Hagan tackles the sample size calculations for cost-effectiveness
analysis from a Bayesian perspective in Chapter 5. He argues that the
Bayesian concept of sample size calculation differs fundamentally
from that of the frequentist, but more closely captures the spirit of
what the analyst is attempting to do.
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The final two chapters concern specific topics in health economic
evaluation in more detail. In Chapter 6, George Carides discusses
approaches to cost analysis in the presence of censoring. He argues
that early approaches of simply applying standard Kaplan-Meier
methods to cost data were flawed. Instead he advocates approaches
based on weighting a cost function by the survival function and
presents simulation evidence of the performance of such an approach.

The important issue of inter-country comparisons is tackled by Henry
Glick and John Cook in Chapter 7. Many clinical trials recruit patients
multinationally, yet it is natural for decision-makers within those
countries to want to know the cost-effectiveness for their particular
jurisdiction. The authors explore the use of statistical tests of
heterogeneity between groups to see if individual countries’ results
depart from the outcome of the overall pooled analysis.

It is an exciting time for health economic evaluation. The methods for
undertaking cost-effectiveness analysis alongside clinical trials are still
evolving. It is clear that there is room for much further refinement
and development of the methods described in this book. It is
hoped that this introduction to the use of statistical methods for
cost-effectiveness analysis will serve not only as a guide to the
practising researcher on the application of appropriate methods, but
also as an inspiration to develop the methods still further.



Analysing cost-effectiveness trials:
net benefits

ANDREW WILLAN

This paper is concerned with some of the statistical approaches that
are available for statistical cost-effectiveness analysis when comparing
two groups.The model I am going to use is a randomised clinical trial
but the approach is pretty much the same for any two groups,
whether randomised or not. The aim is to provide a brief overview of
the work that has been done in this area for the last five or six years.
Much of the technical detail will be omitted but can be found in the
literature. Instead the focus will be on the development of, and the
intuition behind, the methods.

Consider a clinical trial in which patients are randomised between
two therapies: standard (S) and treatment (T). Let §; and C; be
measures of effectiveness and cost on the ith patient of the jth
therapy: j=ST; i=1,2,...n; and n; is the respective sample size.
The expectation of €; is denoted by |4 and the expectation of G is
denoted by V;. The variance structure is given by

v (eji)z 3, = ( o ‘szwj)
Gii P 0@ o

2, ) 2 . .
where 07 is the variance of the effects, ] the variance in costs, and p,
the correlation coefficient between costs and effects for the jth therapy.

What we are really interested in is estimating the expected increase
in effectiveness using treatment rather than standard: A,= pr— Hg, and
the expected increase in costs using treatment rather than standard: A,
= Vy — Vg. We have to make a few assumptions about
these estimates.

Our job is to find unbiased estimates for the difference in effect and
the difference in costs. We are going to assume when we have these
estimates that that they are normally distributed and unbiased, so that
the expected values are the true parameters. We are interested in
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estimating the variances of each difference and the covariance
between them. Thus there are five things to estimate. The first two are
the difference in effects and the difference in costs. But you also have
to take into account the respective variances of the effect and cost
differences and the covariance between them. What follows is pretty
straight forward if you keep in mind that we are simply trying to
estimate these five things.

When we have estimated those five things we can calculate an
incremental cost-effectiveness ratio (ICER). This is defined simply as
the change in the cost over the change in effect: ICER = A./ A, Thus
it measures the additional costs of achieving an extra unit of
effectiveness by using treatment rather than standard.

You could use a net benefit approach where you take the difference in
effects multiplied by what we call the willingness to pay (A) to
convert that into a monetary benefit

b(A) = A - A/ A,

The net benefit is the improvement in health multiplied by what we
think that improvement is worth, less the additional cost; so net
benefit just measures in dollars the added benefit of using treatment
over standard for each patient.

The benefit of this formulation of net benefit (you may have seen
some others) is that where you can have more than one measure of
effectiveness, you can string them all out with a specific willingness
to pay for each particular aspect of effectiveness measured. For
example, where there are K different effects measured in a clinical
trial, then providing that we can specify K different willingness to pay
values for those effects, A,, then it is straightforward to generate the
net benefit as

BALA, oo A) = Ag Ay + Ap Ay + ..+ Ag A= A,

You might also want to do a cost-minimisation analysis where you
are either assuming that there is no difference in effects, which is
not usually a good assumption, or you just do not care about
the difference in effects. You would then just be looking at the
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difference in cost, which is minus net benefit for A=0. That is, we
consider cost-minimisation analysis as a special case of the net
benefit approach.

Consider Figure 2.1, which shows net benefit as a function of the
willingness to pay for health gain measured in quality adjusted life
years (QALYs), A. The slope of the line is the difference in effects.
Where the line meets the vertical axis is (minus) the difference in
costs, and where it crosses the horizontal axis is the ICER (i.e. where
net benefit is zero). Thus from this simple plot you can see the net
benefit for every value of A, the ICER, the difference in costs and the
difference in effects. Our job is to estimate these things from the data.

Figure 2.1 Parameters of interest

/\ Net benefit
b(\)
($)
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N
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Now let us consider an example to illustrate the approach. In a study
there are 161 patients who have end stage prostate cancer. They are
just being treated palliatively, which for the standard care arm of the
trial is prednisone alone and in the treatment arm of the trial is
mitoxantrone added to the prednisone. There was no difference in
survival between the groups. We went back and obtained the cost data
for 114 of the patients in the three larger centres involved in the
clinical trial and quality-adjusted the survival using quality of life
question C30 from the European Organisation for Research and
Treatment of Cancer (EORTC) questionnaire. It was not designed to
be used in this way but we wanted to somehow compensate for the
fact that there was potentially a large difference in the quality of life
between the two study arms.

Within 18 months all 161 patients had died, so there was no
censoring of the data. When there is no censoring you can just use
sample means and variances to estimate the five parameters required
for cost-effectiveness analysis. To estimate the difference in effects
between the two arms of the trial you just take the difference in the
average effects, because there is no censoring. You can do exactly the
same for cost. The variances are obtained from the between-patient
sample estimates of variance, which are then divided by the sample
size to convert to a variance of a mean. Thus when there is no
censoring it is very straightforward to estimate the five parameters;
and once you have estimated the five parameters it is very
straightforward to estimate cost-effectiveness.

It turns out that the average cost per person in the treatment group
was $27,300 compared to $29,000 in the standard group, so there
was a saving of about $1,700 (all currency amounts in this chapter
are expressed in Canadian dollars). When we quality-adjusted the
survival we obtained about 41 quality-adjusted life weeks per person
in the treatment group and 28 in the standard group, so there was an
increase of about 13 quality-adjusted life weeks per person. Thus in
this a case there is a win-win situation: the treatment is better and it
costs less. The ICER is -$134 per quality of life week saved.

11
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Figure 2.2 Problems with ICERS
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However, there are a lot of problems with using ICERs:
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the first is that you cannot estimate it without bias. This is not a
huge problem as the bias rapidly approaches zero as the sample
size increases, but nevertheless people sometimes highlight that as
a weakness;

another issue is that the confidence intervals can include an
undefined value. Figure 2.2 shows a cost-effectiveness plane.
Consider the confidence interval represented by the two broken
lines. This interval includes the vertical axis where effect is zero,
which gives an undefined value for the ICER;

furthermore, the upper limit is negative and the lower limit
is positive, which, without at least plotting it on the cost-
effectiveness plane, is a little hard to explain;
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® another problem is that ICERs can have exactly the same value but
mean two different things. Consider the (negative) ICER value
represented by the line AA on Figure 2.2. Points on this line in the
win-win (south-east) quadrant favour the new treatment, while
points in the lose-lose (north-west) quadrant favour the existing
treatment. But points on this line have exactly the same ICER in
both quadrants;

® confidence intervals can be undefined, if your data are too close
to the origin so that you really cannot define a confidence interval
for ICER.

One final problem with ICERs, which really got me concerned, is that
they are not properly ordered outside the trade-off quadrants. Let me
illustrate what I mean by that. Consider Figure 2.3, which shows
three treatments compared to a standard treatment. With treatment
one (T1) you get two extra units of effectiveness relative to the

Figure 2.3 ICERs are not properly ordered outside trade-off

quadrants
Effect. Cost
(years) ($1000s)
T1 5 8
T2 7 6
T3 7 8
S 3 10 ICER
Al 2 -2 -1
A2 4 -4 1
A3 4 -2 0.5

13
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standard treatment (S) and you save $2,000. With treatment two (T2)
you get four extra units of effectiveness and save $4,000. Treatment
two is therefore a lot better than treatment one, but the ICER is exactly
the same, -1, in each case. Treatment three saves about the same
amount of money as treatment one but has twice as much
improvement in effectiveness, yet its ICER is actually larger than for
treatment one, -0.5>-1. It is therefore meaningless to talk about a
confidence interval over a range of values that are not properly
ordered: a confidence interval is, strictly speaking, an ordering.

As explained earlier, we can instead conduct our analysis in terms of
net benefit. We can do an equivalent analysis either in terms of net
monetary benefit (Tambour et al. 1998) or net health benefit (Stinnett
and Mullahy 1998). They will both lead to exactly the same results.
Essentially what we are looking for is to see if net benefit is positive,
which indicates that treatment is cost-effective. My personal
preference is to analyse net monetary benefit: it is a linear function of

Figure 2.4 Net benefit
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A (see Figure 2.1); I find it easier to talk about net benefits in terms
of dollars; plus it allows for more than one type of measure of
effectiveness as described above.

How does net benefit relate to the cost-effectiveness plane? Consider
the cost-effectiveness plane shown in Figure 2.4. If you divide the
plane by a straight line through the origin with slope equal to A, all
those points above this line have negative net benefit (favouring
existing treatment) and all the points below this line have positive net
benefit (favouring the new treatment). Consider the point (Ag, A.):
the vertical distance between that point and the line through
the origin with slope A is the net benefit in monetary terms; the
horizontal distance between that point and the same line is the
net-benefit in terms of health. If you draw a straight line through
the point (Ag, A.) parallel to the line through the origin (i.e. also
with slope A) and project it onto the horizontal axis, then this is also
equal to the net benefit in terms of effectiveness. Continuing the
projection to the vertical axis gives negative net-benefit in monetary
terms. So the presentation of results on the cost-effectiveness plane
gives a little more information than you might imagine.

Figure 2.5 Net benefit is properly ordered

A costs

slope = A

A effectiveness

INB1 ~
INB3 _.-"8lope =-0.5

INB2
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Now consider Figure 2.5, which returns to the example in Figure 2.3
where there was the conflict with respect to the way we thought
treatments should be ordered in terms of the ICER. Now let us choose
a value for A and plot a line with this slope that passes through each
of the points. If you project these lines back to the vertical axis, you
will notice that the incremental net benefit for treatment two (INB2)
is the greatest, followed by that of treatment three, and treatment one
has the smallest net benefit. Thus, net benefit orders the treatments
in the same way we thought they should be ordered in the first place.
All we have done is project back to the vertical axis using the slope A,
representing the willingness to pay for effectiveness.

How do we do an analysis with net benefit? We really want to test the
hypothesis that net benefit is negative and reject it if we can, in which
case we will adopt treatment over standard. We have seen how to
estimate net benefit: it is simply A multiplied by our estimate for the
difference in effects, minus the difference in costs

b(A) = A - A— A,

You can obtain the variance for net benefit as a simple combination
of the estimates for the variances and the covariance of the
incremental effects and costs

V&I(B()\)) =\ var (&e) + var (&C) —2A - cov(&e, &C)

Again, you can see that we only have to estimate five parameters: the
difference in costs, the difference in effects, the variances in each, plus
the covariance between them. Where we have complete data this can
be done with introductory level statistics which we are all familiar
with. To test the hypothesis that net benefit is negative we can use a
z-test: we simply take the estimated net benefit and divide it by the
square root of the variance and compare it to the critical value from
the normal distribution. More likely, we would want to simply
estimate uncertainty by constructing confidence intervals for many
different values of A.

Figure 2.6 shows this analysis for the prostate cancer example I
referred to earlier. The middle line is the estimated net benefit as a

16
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function of the willingness to pay, A, for an extra quality-adjusted life
week (QALW). The slope of the line is positive because we have
observed an increase in effectiveness when switching from standard
therapy to the new treatment. Since the net benefit line hits the
vertical axis at a positive value we know that new treatment is
associated with reduced cost: it hits the vertical axis at A, $1,700,
so the difference in cost (treatment cost minus standard cost) is
—$1,700. The point at which the net-benefit line hits the horizontal
axis gives the ICER, which is negative for this example, -$134. Figure
2.6 also shows confidence intervals around the net benefit for every
value of A. Where these intervals cross the vertical axis gives the
confidence interval for the cost difference. Where the net benefit
intervals cross the horizontal axis is the confidence interval for the
ICER, which is identical to the Fieller theorem solution. If you are
really brave and are prepared to say ‘T think it’s worth paying $1,500
for a quality adjusted life week’, we can get an estimate of the net

Figure 2.6 Net benefit as a function of willingness to pay (\)
— prostate cancer example

60,000
55,000
50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000

% lower limit
5,000 // 95%
0

-5,000
-10,000
15,000 -1764 -134 378

20,000 1 1 1 1 1 1 1 1
-2,000 -1,500 -1,000 -500 0 500 1,000 1,500 2,000

N ($/QALW)

Net benefit ($)

QALW = Quality Adjusted Life Week
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benefit and associated confidence interval for that value of A. So we
can do all three analyses on a single graph and all we have had to use
is introductory statistics.

This all sounds too good to be true and of course it is, because in
almost all cases except for when all the patients die or you follow
them for as long as the period of interest, you are going to have
censored data. Censored data typically occur because, even if patients
are not lost to follow-up, patients randomised in the last few years of
the trial will not be followed for the entire duration of interest. For
example the period of interest may be five years but you may want to
do an analysis two years after the last patient was randomised.

This is where the analysis starts to become unwieldy. George Carides
covers a number of procedures for handling censored cost data in
Chapter 6, but I will introduce here an example using censored data.
Six hundred patients at risk of having a cardiac arrest were
randomised between their current medical treatment (amiodarone)
and an implanted cardioverter defibrillator (ICD). For the economic
analysis, the measure of effectiveness was mean survival, and we
restricted our time period to a fixed period after randomisation. This
means that we assumed that the survival curves and the rates at which
patients accumulate cost after this period are the same in both groups,
or at least negligibly different.

If you want to estimate mean survival and you do not have complete
follow-up, then you just need the area under the survival curve,
which can be estimated simply using the standard Kaplan-Meier
estimates. A Kaplan-Meier survival curve is flat and takes a drop every
time there is a death; to get the mean survival for each treatment
group, you simply have to add up all the rectangles defined at the
points that someone dies. Of course, we also need an estimate of the
variance for the mean survival in each group and although the
formula for the variance is pretty ugly, it is a standard method and can
be found in any medical statistics book.

The problem is that if you have cost data and they are censored,
you cannot use this standard Kaplan-Meier method directly. That is,

18
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you cannot simply use cost to death instead of time to death because
you have what we call informative censoring and this leads to
positively biased estimates. Instead, you have to use the Lin method
(Lin et al. 1997) as discussed by George Carides in Chapter 6. You
divide the time from entry into the study into increments (which
do not have to be equally spaced) and calculate the mean cost for that
interval for patients who were not censored within the interval. Most
of the trials I have been involved with have cost histories, so typically
we record when the cost is incurred. In order to calculate the mean
cost for each treatment group, within each time interval, you just
include all the patients that enter the time period and were not
censored — they might have died during that time period, but they
were not censored during that time period — and calculate their
average costs for that interval.

To obtain the overall cost estimate for the patient group, we multiply
the mean cost during each interval by the proportion of patients alive
at the beginning of the interval and then sum across all intervals.
This is our estimate of expected cost. Unfortunately, the variance
expression for this estimate of cost is rather messy and the covariance
expression is even worse — the expressions themselves can be found
in Willan and Lin 2001.The point is that we are trying to estimate the
same five things as before: the difference in effects, the difference in
costs, the variances of those estimates and their covariance. The
expressions are more complex now, but the approach is the same.

Having estimated these five things for the ICD study in the presence
of censoring, we can again estimate net benefit and construct a
confidence interval, all as a function of willingness to pay for
additional years of life, A. This is presented in Figure 2.7, which is
limited to positive values of A, since negative values do not really
make sense. Again the net benefit line has a positive slope, so you
know that the new treatment improves effectiveness. The net benefit
line hits the cost axis at a negative value (i.e. a negative cost saving),
so treatment increases costs, and where it crosses the horizontal axis
is the ICER, an estimated $188,500 per life year gained (note, no
quality adjustment).

19
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Figure 2.7 Net benefit as a function of willingness to pay (\)
— for CIDS example

150,000
125,000
100,000
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-75’000 , 
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100,000 1 1 1 1 1 1

0 50,000 100,000 150,000 200,000 250,000 300,000

\ ($/Year of life)

Along the vertical axis we can look at a cost minimisation analysis, not
that it would make sense in this case, but you can estimate the
difference in cost together with a confidence interval. Where the
upper limit of net benefit crosses the horizontal axis we get the lower
limit of the ICER, an estimate of $77,000 per life-year gained. The
lower limit of net benefit never actually reaches the horizontal axis
and that just means that there is no limit to what the extra cost of a
life year could be, and this is reflected in a confidence interval for the
ICER where the upper limit is inside the lose-lose (north west)
quadrant of the cost-effectiveness plane.

Up to now we have been assuming a constant trade off between
costs and effects, A, represented by the straight line on the cost-
effectiveness plane. What this means is that if there were a reduction
in effectiveness, we would want to be compensated at the same rate
as we are willing to pay for health gain in the north-east quadrant.
However, it is common for people to say that in order to give up

20
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something that you already have you need to be compensated more
than you would be willing to pay for it in the first place. Some
people even go so far as to suggest that when the line representing
this trade-off between costs and effects hits the vertical axis it
becomes vertical itself. In other words, there are no circumstances
where they are willing to give up effectiveness — this might be
through the fear of being sued or because the perceived political costs
would be too great or whatever. However, let us assume that the effect
is not so extreme, and that there is some trade off in the south-west
quadrant, but that it is at a greater level than when considering
willingness to pay for increased effectiveness. That is, we would need
greater compensation to give up something we already have than we
would be willing to pay for it in the first place. In other words, the
‘willingness to accept (WTA)’ has a greater magnitude than the
‘willingness to pay (WTP)’.

What would this mean for our analysis of cost-effectiveness? Consider
Figure 2.8, which shows ellipses representing the joint density of

Figure 2.8 Net benefit when WTA >WTP (WTA = yWTP; y>1)
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Figure 2.9 Acceptability curve when WTA >WTP
(WTA = yWTP; y>1)
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costs and effects on the cost-effectiveness plane. If the willingness to
accept is 7y times greater than the willingness to pay, then the line
representing our decision rule will have a kink at the origin, since
the slope will be different in the two trade-off quadrants. The slope
will be A in the north-east and south-east quadrants and yA in the
south-west quadrant. When we look at the area above this kinked line
(indicating treatment is not cost-effective), it has to include a greater
area than if we had simply projected a straight line with slope A
through both quadrants. Therefore, my estimate of incremental net
benefit will decrease and the confidence interval limits will actually
move towards the origin, all because we are including more area,
more probability, above the line.

In terms of acceptability curves, which show the probability that net
benefits are positive as a function of A, the effect of introducing a kink
at the origin can be seen in Figure 2.9. The acceptability curve
for y>1 (i.e. when willingness to accept, WTA, is greater than
willingness to pay, WIP) lies above that for the case where y=1,
which corresponds to the standard approach of assuming the same
slope in the trade-off quadrants.
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Sample size calculations for
cost-effectiveness studies

BEN VAN HOUT

This paper concerns power calculations, and will include first the
simple theory of power calculations for effectiveness only (i.e. just
one dimension). I will then move on to consider two dimensions:
both costs and effects. Finally, I consider practical applications of
the methods.

I start with the familiar cost-effectiveness plane. The difference in
effectiveness is on the horizontal axis and the difference of cost is on
the vertical axis. In an evaluation of a new treatment, if we end up in
the south-east quadrant where treatment dominates, then we are very
happy since we have more effectiveness at less cost. If we end up in
the north-west quadrant it is very sad since the new treatment is
clearly no good. If we end up in the southwest or northeast quadrants
then there is a trade-off to be made and this is where the health
economist makes a living.

In terms of power, when we are planning a trial we are concerned
about how many patients we need to include in it to be able to detect
a reasonable treatment effect. We have a type one error «, the chance
of falsely rejecting the null hypothesis of no difference between the
treatments, and a type two error 3, the chance that we fail to reject
the null hypothesis when a treatment effect exists. The power is
defined as 1, the chance that we correctly reject the null hypothesis.

What we need are expectations about the average effectiveness and the
variance of the average effectiveness. We must first specify our null
hypothesis, and we may indeed have a number of null hypotheses we
wish to consider:

® a two-sided hypothesis that treatments are equally effective, such
that evidence of a treatment effect in either direction leads us to
reject the null;
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® a one-sided hypothesis that the new treatment is no better than
the existing treatment;

® or an equivalence design where the null hypothesis is that the
treatments differ in effectiveness and the aim of the study is to
show that this is not the case (within some range of equivalence).

The standard textbook result for the sample size calculation, based on
a null hypothesis of equal treatment effects and assuming the same
number of patients is to be recruited to each arm of the clinical trial
is given by

a1
(Ul_ Uz)z |H1_ Uzl

where Zis the critical value from the normal distribution to give the
appropriate type I and type II error rates, | is the expected
effectiveness and o the variance for the treatment groups t = 1,2.

For example, assume a 20% event rate when there is no treatment, i.e.
we expect that patients would come back about 20% of the time, and
that the event rate would decrease to 10% with treatment, i.e. a 50%
reduction in the event rate. We want to reject a null hypothesis if « is
smaller than 0.05, and we want the power to be at least 0.8. Then the
sample size needs to be at least 290 in each arm of the trial.

Using this formula and the assumption of asymptotic normality is
just one way to find a solution to the sample size problem. An
alternative approach would be to use simulation in order to examine
the power of any particular sample size. This is particularly useful
when preparing for a randomised clinical trial. The approach is to
simulate a trial with, for example, 1,000 patients. Given the expected
event rates as before — 90% of patients event-free with treatment and
80% event-free without — you run the simulation 10,000 times, say,
and you check for each sample size whether the null hypothesis is
rejected in each trial and record the result. The proportion of the
10,000 trials in which the null hypothesis is not rejected then gives
the power for the given sample size. Now it is a simple case of
plotting the power as a function of the sample size, which leads you
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to the numbers of patients required. So it is not necessary to use a
formula and parametric assumptions given the power of desktop
computers to undertake very large numbers of simulations in a
short time.

Figure 3.1 shows the results of just such a simulation presenting
power as a function of the number of subjects. From the figure we see
that if we want a power of about 90% then we need about 290
patients. If we were to use the standard mathematical formula then
the curve generated falls right on top of the curve estimated through
the simulation experiment in Figure 3.1.

So far I have presented the one-dimensional case of an effectiveness
evaluation only, to show how the standard approach works. I now
extend the problem to the two-dimensional case of cost-effectiveness
evaluation. Typically now we are considering cost-effectiveness
analyses of drugs alongside clinical trials, and due to the vested
interests of the pharmaceutical industry there is much regulation
concerning the design and analysis of such trials. In particular, there
will be very well defined protocols and analysis plans. Definitions of

Figure 3.1 Power as a function of the number of subjects, for
effectiveness only
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cost, of effect and of cost-effectiveness will already be in the trial
protocol. We have a say in how we are going to collect the data,
what statistical methods will be used, and how the results will
be presented.

One point I would like to stress here is that we act as if we know the
unit costs. Unit costs used to value the resource use observed in
clinical trials tend to be treated as if they are fixed and known. We
typically act as if there is no uncertainty surrounding cost
calculations, whereas in my view there is considerable uncertainty.

With this point in mind, I turn to the problem of representing
uncertainty in the two-dimensional case where we are looking at both
costs and effects. We know, from the central limit theorem, that we
can assume that average costs and effects are normally distributed.
However, we also know that the cost-effectiveness ratio itself may not
have a finite expectation or a finite variance since we know that the
ratio of two standard normal distributions (the Cauchy distribution)
does not have a finite expectation or a finite variance. We also know
that 95% confidence limits for the cost-effectiveness ratio will
probably not be symmetrically distributed, so for an estimated cost-
effectiveness ratio of $20,000, the confidence limits may turn out
to be $10,000 to $50,000.

There are two real solutions to the problem of estimating confidence
limits for cost-effectiveness ratios. Either we can assume a bivariate
normal distribution (which is essentially the Fieller approach); or we
adopt the bootstrapping approach.

Figure 3.2 shows how I prefer to present cost-effectiveness results: as
ellipses on the cost-effectiveness plane. The outer ellipse contains 95%
of the probability distribution, and this is the smallest area on the
plane that contains with 95% probability both cost and effect. I realise
that saying these words makes me a Bayesian. If I want to be a
frequentist I need a much longer sentence to say what the ellipse
means. Also shown in Figure 3.2 are the rays representing the Fieller
95% confidence limits: 95% of the joint density of costs and effects is
contained between the rays.
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Figure 3.2 Confidence ellipses and Fieller limits on the
cost-effectivenes plane
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To provide a one-dimensional summary of the cost-effectiveness
results we can use an acceptability curve as presented in Figure 3.3.
This curve shows for different limits of acceptability —i.e. the highest
acceptable cost-effectiveness ratio for decision-makers — how
probable it is that the intervention under evaluation is cost-effective.
In this illustrative example, if $50,000 per life year gained were
judged to be an acceptable limit for decision-making, we have a
probability of 0.95 that the intervention lies below this value.

The alternative way to estimate cost-effectiveness confidence limits,
bootstrapping, is a non-parametric approach that relies on computing

Figure 3.4 Distribution of the cost-effectiveness ratio estimated
non-parametrically via the boostrap method versus
that derived analytically through the assumption of
joint normally distibuted costs and effects
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power rather than parametric assumptions. Bootstrap re-samples of
the original samples are drawn from the trial data (with replacement)
and the original cost-effectiveness calculation is undertaken for this
re-sample. The process is then repeated many (say 10,000) times. The
frequency distribution of the bootstrapped cost-effectiveness ratios is
then calculated and a bootstrap estimate of the acceptability curve can
be produced. Figure 3.4 shows a frequency distribution based on
bootstrapping compared to an analytic solution from an analysis of a
real life trial in the Netherlands. My colleagues and I have now
analysed some 11 or 12 trials using bootstrapping methods, but
bootstrapping has never given a different result from that which we
would have generated using the bivariate normal assumption.

Now that we have considered how cost-effectiveness results from
clinical trials are analysed, we can return to the issue of power and
sample size in cost-effectiveness studies. Again, we need a null
hypothesis (to be rejected); we need a test statistic (as introduced);
and we need expectations about the average costs and effects with
and without treatment; the variances of costs and effects with and
without treatment; and an estimate of the covariance between costs
and effects.

There may be several different null hypotheses that could be
formulated. One might be that you are interested in both effectiveness
and cost-effectiveness. In other words, the null hypothesis would be
that the intervention is mneither effective nor cost-effective.
Alternatively, the null hypothesis might be that the intervention is not
cost-effective relative to a particular value of the acceptable limit on
cost-effectiveness (e.g. $50,000 per life year gained). Or it might be
the case that you would want to use different cost-effectiveness
criteria in the north-east and south-west quadrants reflecting the fact
that while it may be acceptable to implement a new treatment at
$50,000 per life year gained it may only be acceptable to deny a
currently provided treatment at $100,000 per life year foregone.

The use of a constant acceptable limit across the quadrants in the cost-
effectiveness plane corresponds to the net benefit approach. This is
probably the more appropriate formulation, as others have argued.
While we do have difficulties with changing from an existing
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treatment when the replacement is less effective than the existing
treatment, albeit less costly, it may be appropriate to consider this
issue. However, to date it is not clear that we know the relative
trade-offs in the different quadrants, and purely in terms of economic
efficiency, the values should really be the same in the north-east as in
the south-west quadrant. Until future work clarifies this issue, I will
stick with equal acceptable limits in the two quadrants,
corresponding to net-benefits.

So to approach the sample size problem in cost-effectiveness we can
either look for an appropriate formula in the literature or we can base
our calculations on a simulation experiment. For example, Briggs and
Gray (1998) present a conservative formula assuming perfect
negative covariance between costs and effects. Briggs & Tambour
(1998) and Laska et al. (1999), use net benefits to adjust for
covariance in their formulae. Alternatively Al et al. (1998) use a
simulation approach. It is important to beware of the formulation of
the null hypothesis. Some commentators have employed what appear
to me to be very strange null hypotheses to generate a sample size
formula (e.g. Gardiner et al. 2000).

The simulation approach outlined by Al and colleagues (1998) is
essentially the same as that outlined for the one-dimensional case
above. You simulate a trial with, say, 1,000 patients, given the
expectations of effectiveness with and without treatment (90% and
80% patients being event free respectively). Of course, for the
cost-effectiveness problem we also need expectations about costs with
and without treatment, and we need expectations about the variance
and covariance in the costs and effects. These do not come out of a big
hat, so you need either existing information from a pilot study or
something else. Simulation may provide the answer.

For example, when we are undertaking trials for cost-effectiveness for
cardiovascular disease and interventional cardiology, there are only a
few possible events: people have a percutaneous transluminal
coronary angioplasty (PTCA) and they might come back for a
re-PTCA, they might have bypass surgery, they might have a
myocardial infarction, and they might die. These are the only things
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that can happen to these patients within a time span of two to
three years. So, as an example, we can take the cost of an event,
modelled say as a log normal distribution with mean 5.9 and standard
deviation 1, and apply this to the event rate and add in the cost of
treatment for those patients in the treatment arm plus a background
cost (say the same lognormal distribution). Overall this generates an
expected cost per event avoided of $2,000. By simulating this process
we can also generate an estimate of the covariance between costs and
effects, and we get more pronounced estimates of the variance of
costs and effects.

Applying the simulation method to the estimated costs, effects,
variance and covariance allows you to generate a power graph. Figure
3.5 presents the power as a function of the number of subjects for
both the cost-effectiveness and the effectiveness only studies. It is
clear that to reach the same power in a cost-effectiveness study needs
more patients than when studying effectiveness alone. In this
illustrative example, for 90% power we would probably need
something like 700 or 800 patients for the cost-effectiveness study,
compared with just 290 patients to study effectiveness alone.

Figure 3.5 Power as a function of sample size for a study of
effectiveness only and for a study of cost-effectiveness
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The number of patients needed in a trial for the cost-effectiveness
study is a function of a number of different factors. The numbers
required in the study increase the lower is the acceptable cost-
effectiveness ratio used for decision-making, since then the smaller
you want your ellipse to be and so the more observations you need.
The numbers also increase the smaller the (positive) difference
in effects, the higher the (negative) difference in costs, the higher
the variances, and the more negative the correlation between costs
and effects.

It is rare for health economists to be asked to contribute to the power
calculations of the studies they become involved with and I suspect
that at the time of writing I am one of the few people to have done
a real-life power calculation that actually informed the design of a
cost-effectiveness analysis alongside a clinical trial. The ARTS trial was
undertaken to compare bypass surgery with stenting. We supposed in
advance that bypass was going to be better than stenting, however, we
also knew that stenting was going to be less expensive. We came to
the conclusion that cost-effectiveness analysis might be the most
appropriate way of trying to express this. With the assumptions about
the price of stenting and the price of bypass surgery, we powered that
trial in such a way that we needed fewer observations maybe, than if
we had just done an effectiveness trial.

Another thing we realised is that the variance between costs is always
rather high, and that might mean that there may be valuable
information from earlier trials that we were ignoring. For example, if
we do a trial comparing stenting with PTCA, and we know a lot
more about PTCA because we have all those observations from the
past, to do a trial which ignores that previous knowledge seems
rather foolish.

When there is existing information which you want to incorporate,
then Bayesian methods seem the natural way to go. My understanding
is that there is a natural correspondence between the frequentist
approach and Bayesian methods using uninformative priors. But we
wanted to know what would happen if we tried to use informative
prior information. We tried specifying our prior beliefs and using
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these in the power calculation, but we got into a lot of difficulties. It
turned out that the analysis was very sensitive to the choice of prior
and this made us very uncomfortable, since it gave the impression that
by simply changing our priors slightly we could tailor the result to
whatever we wanted. The way I think we should go with the Bayesian
approach is to model the whole process using the sorts of decision
analytic models we have been using for the last 20 years, but putting
in a probabilistic component to the input parameters. The outputs of
these models look very much like the elliptical joint distributions we
expect from clinical trials.

Turning now from theory to practical application of sample size
calculations, my experience has been that sample size calculations
often proceed along the following lines. Start by assuming an event
rate of 10% and a 10% relative decrease in event rate (i.e. from 10%
to 9%). We want to reject the null hypothesis if « is less than 0.05 and
we want power of at least 80% to test the difference. This generates a
sample size of 14,784. That is a lot of patients and would make the
trial too expensive. Let us now assume that we are looking for a 20%
decrease in event rate (from 10% to 8%); now the sample size
required is about 3,800. This is affordable, but does not give us the
status of a really large trial, so we need something a little bigger. Let
us therefore assume a 15% decrease in event rate (from 10% to 8.5%)
and make the power 90%; now the sample size required is 8,956.That
looks like a nice size of trial, so let us stick with that. In other words,
all too often the sample size calculation is undertaken backwards:
first estimating what sort of sample size is reasonable and then
back-solving for the other design parameters.

This illustration was only assuming a one-dimensional effectiveness
study. As soon as we include costs, the variance of costs, and the
covariance of costs and effects, we open the door to even more
potential manipulation. Now when we ask the question of how many
subjects are needed for the study, the mathematician will probably say
‘hmm’, the statistician will give you a nice answer ‘maybe between 50
and 600°, and the health economist is probably going to say ‘how
many do you want it to be?’
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There are still some problems. I have been involved with the CAPRIE
study, which provides an interesting example. This is a large study
with over 18,000 patients, to assess the effect of Clopidogrel versus
aspirin, and overall it shows a decrease in event rate from 90.22%
percent to 89.35%. Clopidogrel costs about $1 and aspirin about 5
cents. In the stroke group we have event rates of 86.61% versus
85.58%, only a slight difference. In the MI group we have event rates
of 90.74% versus 91.04%, and in the peripheral artery disease (PAD)
group we have 93.33% versus 91.00%. In other words across three
events we have one difference that is positive and significant, one that
is positive and not statistically significant and one that is negative and
not statistically significant. This raises the question of what we should
assume about the effect of treatment on event rates: are we to assume
a 0.87% reduction in event rate in the whole trial, or should we
assume only an effect on the PAD group? I can assure you that
clinicians in the Netherlands are not treating the MI patients. Some
people are treating PAD cases, and in the stroke patients they do have
just a little bit more alternative than just aspirin, so they are not
treating them here either. So everybody is looking at the effectiveness
and cost-effectiveness of these sub-groups but we still really do not
know what the best methodology is for estimating the effectiveness
and cost-effectiveness of treatment on these groups. If you want to
study sub-groups you have to ensure that the power of each part of
the overall study is sufficient, that patient numbers in the sub-groups
are high enough.

Overall, I believe that power is a very important concept and one that
should be given much more consideration.

My final comment is to make an observation on the debate about
whether net benefits are superior to cost-effectiveness ratios. I
consider it rather premature to be abandoning cost-effectiveness
ratios in favour of net benefits and I will try to explain why. In the
Netherlands we have accepted cervical cancer screening which costs
about 7,000 per life year gained. We have accepted breast cancer
screening which is about 10,000 per life year gained. We have not
accepted schemes that are much more intensive with much higher
cost-effectiveness ratios, so let us presume that our acceptance limit
in the Netherlands is under 20,000 per life year gained. This sort of
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figure can be gleaned from written reports in the Netherlands. Yet, we
have accepted lung transplantation as an appropriate treatment in the
Netherlands, which has an estimated cost of about 80,000 per life
year gained. We also treat patients with factor 8 and these patients will
cost us about 100,000 per year. This is not per life year gained; just
to treat them and to make them a little better, costs us 100,000 per
year. So in reality we do not have a clue what the maximum
acceptance limit is. Therefore, basing an analysis on a statistic that
assumes we know what that maximum limit is, seems to me a
little strange.

How do I communicate such a statistic to clinicians? If I go to a
clinician after he has just been reading that a treatment is associated a
10% decrease in the event rate, and I say that the treatment has
negative net-benefits, he is not going to understand. Within many
discussions, simply saying that the additional cost per additional
event-free survivor is about 10,000 is a lot more useful. Please do
not throw away cost-effectiveness ratios just yet!
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Bayesian methods for analysing
cost-effectiveness

DANIEL F. HEITJAN

The essence of cost-effectiveness analysis is that we want somehow to
combine cost and effectiveness data together into a rational scheme
for allocating resources. In the US the setting is rather different from
countries that have national health care systems. Most working people
have insurance through their employers, who purchase plans from
private insurers, and some individuals purchase health insurance
directly from insurance companies. There are insurance systems that
are operated or funded by local, state and federal governments, but
these are mainly for the poor and elderly. Hence, the consumers of
cost-effectiveness analysis in the US are insurance companies,
operating in a competitive environment, who are trying to decide
what to cover in their health insurance plans. Presumably, the drug
and device manufacturers are also keenly interested in what comes
out in these analyses because they are selling their products to the
insurance companies. The government has a role in this, of course, but
probably not as big a role as in Western European countries.

There are two questions of interest here. First, when we are doing
cost-effectiveness analysis, what is it that we should be estimating? In
statistical terms, what is the estimand? The second question is how to
summarise the uncertainty about it. This paper addresses both of
these questions.

To fix notation, Figure 4.1 presents the cost-effectiveness plane. On
the horizontal axis is the incremental effectiveness, plotting the
difference between the effectiveness of treatment one and treatment
zero, and on the vertical axis is the difference between the average
costs of treatment one and treatment zero.

Considering the question of what to estimate, the concept
traditionally used is the incremental cost effectiveness ratio (ICER),
defined as the cost difference divided by the effectiveness difference.
The context here is clinical trials, which are assumed to give unbiased
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Figure 4.1 The cost-effectiveness plane
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estimates of both the numerator and the denominator of the ICER.
Plotting the cost and effectiveness difference pair in the appropriate
quadrant of the cost-effectiveness plane, and drawing the ray through
that point from the origin, gives the ICER as the slope of that ray. If
the new treatment is both more effective and expensive, it lies in the
north-east quadrant, and the ICER refers to the cost per additional
unit of health that you are purchasing by adopting the new treatment.
In the south-west quadrant the ICER represents the savings per unit of
health foregone, if the new treatment is used rather than the old one.
So in the north-east quadrant you are buying additional units of
healthcare at additional cost and in the south-west quadrant you are
in a sense selling health, considering adoption of a treatment that is a
little less effective but will save a lot of money.

Remember that we are taking the point of view of an insurer
operating in a competitive environment, as distinct from that of a
patient or a doctor. A key paper here is Karlsson and Johanneson
(1996) in which the authors discussed the use of the ICER in a
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resource allocation mode. Their idealisation of the insurer’s problem
is that the insurer has a fixed amount of money and has several
different populations of policy holders, for instance diabetics, people
with heart failure, people with cancer, people with various other
combinations of diseases, kids who are healthy, all different kinds of
people. For each of the distinct populations there is an array of
mutually exclusive treatments available.

The problem for the insurance company is how to allocate its fixed
resources among the different diseases so as to provide the optimal
amount of benefit for the fixed amount of money that is available. This
optimal strategy takes the following steps:

® rank the treatments from least to most effective within each
disease category;

® calculate the ICER of each treatment with respect to the next less
effective treatment;

® climinate all the dominated treatments (a treatment is dominated
if a combination of the two adjacent treatments is more effective
than it is by itself);

® rank the treatments by ICER from lowest to highest.

Using this ranking the insurer will now purchase treatments, starting
with those with the lowest ICER, working up the ranking until the
budget is exhausted. A lot will depend on how many patients there are
requiring each treatment, so in practice there will be a lot of
prediction and statistical analysis involved at this stage, but in
principle this is how the strategy works. The highest ICER that can be
afforded with the fixed budget is what Karlsson and Johanneson call
the ‘shadow price’. This concept matches up with ‘willingness to pay’,
or A as it is often known. Even in the US there is plenty of government
regulation of health insurance. So there may be States where particular
treatments have to be covered, whether the ICER is high or low, in
which case such legal and political pressures will distort how this
process is going to work. Fundamentally however those are the
principles for constructing a rational resource allocation scheme.

39



BAYESIAN METHODS FOR ANALYSING COST-EFFECTIVENESS

So now that we have established what the ICER is and how we would
use it if we knew it, we can turn to some very serious issues that arise
in estimating the ICER.

The standard approach in the literature, at least implicitly, is to do a
clinical trial, estimate the ICER, calculate a confidence interval, and
then make the resource allocation decision. Unfortunately, using
ICERs in this way leads to a problem of interpretation because so far
we have assumed implicitly that the new treatment is always more
effective and more costly than the standard, which in reality may not
be the case. Specifically, the ICER groups together cost and
effectiveness pairs that have totally different meanings, and there is
not a single, unambiguous way to rank ICERs.

The point can be illustrated from Figure 4.1. In the north-east
quadrant, the more favourable ICERs are those that are closer to the
horizontal axis, where the price for purchasing health care is low. In
the south-west quadrant, the higher ICERs are more favourable
because here you are selling health care rather than buying it, so you
want to get the best possible price. So points in the north-east
quadrant can be thought of as ‘apples” and points in the south-west
quadrant as ‘oranges’. Any interval for the ICER that fails to distinguish
the quadrants is mixing together apples and oranges. It cannot
be interpreted.

In the north-east quadrant of Figure 4.1, an arrow going clockwise,
towards lower ratios of cost to effect, traces out an arc of improving
ICERs. In the south-west quadrant, the arc of better ICERs goes
counter-clockwise, toward higher ratios of savings to effect.
However, a straight line through the origin shows a value of ICER
that is the same (the gradient of the line is the same) in both the
north-east and the south-west quadrants. If we rotate this line a little
bit clockwise, in the north-east quadrant, that is good, it is a positive
move. But that is a negative move in the south-west quadrant, because
it moves toward a lower value of return for health foregone. So if all
you are given is an interval of ICER values, without knowing which
quadrants they are in, then you may be identifying (i.e. grouping
together) sets of points in different quadrants that have totally
different interpretations.
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This is not just an academic point. It is not at all unusual to find in a
clinical trial that a new treatment is not significantly more effective,
or possibly is even significantly less effective, than the standard
treatment. If there is any chance of a negative effect, the ICER and its
interval are fundamentally uninterpretable.

In other chapters of this book, Ben Van Hout and Henry Glick both
suggest using ellipses and intervals when presenting ICERs. That is
fine, because it presents information to enable the ICER to be
interpreted. But what has been happening in the literature, at least for
some time, is that people present intervals for the ICER as if they were
the complete answer. My contention is that such intervals are not
meaningful. It is not enough just to show the ICER; you have to say
something about which quadrant of the cost-effectiveness plane it is
in. Furthermore, as Andy Willan points out in his chapter, for points
in the north-west and south-east quadrants we cannot even rank by
ICER. At least in the north-east and south-west quadrants we can rank
ICERs, but in the other quadrants even points on the same line may
not have the same meaning at all.

These are daunting problems. Nevertheless you may decide you still
want to estimate ICER, in which case you will encounter some vexing
problems of statistical inference. These arise in trying to estimate a
ratio parameter. The big issue here is that along the vertical axis of the
cost-effectiveness plane (where the effectiveness difference between
treatments is zero) the ICER is a discontinuous function of the
effectiveness difference. When the effectiveness difference is zero (i.e.
the typical null hypothesis in clinical trials) the ICER is infinite. Even
worse, as you approach the y-axis from the north-east quadrant the
ICER goes off to positive infinity, whereas if you approach from the
north-west quadrant the ICER goes off to negative infinity. Moreover,
if you have two points that are just on opposite sides of the axis from
each other, you would expect them to be similar. But in fact their ICER
values are as different as they can be, making it impossible to
construct confidence intervals for the ICER. So if you are trying to
estimate the ICER and it happens that either the true value or the
estimated value of the difference in effectiveness is near zero, you are
in this territory and you have problems.
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Consider some of the interval estimation methods that people have
proposed recently. Over the last few years, health economists have
taken a serious interest in summarising uncertainty about ICER. They
started by looking at the delta method (Taylor series), the formula
used for standard errors in asymptotic statistics. Unfortunately, that
formula can fail unless the sample size is very large — much larger
than we usually have in clinical trials. The required sample size is
larger the closer one gets to the vertical axis, i.e. the smaller the
difference in effectiveness. So that method will not work.

The next method considered was Fieller’'s method, which has
advantages and disadvantages. As a confidence set, it works fine no
matter where you are in the parameter space, but if the effectiveness
difference is not significant, rather than giving you an interval it gives
you the outside of an interval, and it can do other pathological things
too. So Fieller’s method has an undeniable appeal in that it gives you
a confidence set that has the correct coverage probability. But it has a
strange property in that it produces bizarre confidence sets, which
may mean that it should not be used. The problem arises whenever
the ICER denominator —the effectiveness difference — is not
statistically significant. Because many trials do not give significant
results, this behaviour can be a real issue.

Could bootstrapping (i.e. re-sampling from the data) solve this
problem? Unfortunately, the problem defeats the bootstrap. It can
actually turn it into your enemy. This is not to say that the bootstrap
is no good; you still might want to adopt a bootstrap approach as an
approximation to something else, or as a way to give robustness to a
normality assumption that may be questionable. (The issues that
George Carides covers in his chapter are different.) For this ratio
estimation problem the bootstrap also suffers from the problem of
discontinuity in the ICER estimate.

Table 4.1 is from Heitjan et al. (1999a) showing coverage
probabilities — i.e. the performance of a confidence interval in
repeated samples — for several methods over a range of true values of
the ICER. The rows refer to different combinations of cost and
effectiveness differences, and as we move down the table the values
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Table 4.1 Estimated coverage probabilities for various confidence
interval methods (%)

Cases Taylor Fieller's Bootstrap Bootstrap  Bootstrap
(combinations  series method normal percentile  bias-
of cost and corrected

effectivenes
differences)

‘1 95 94 95 92 90
‘2’ 92 96 95 97 95
‘4 86 96 94 96 76
‘8’ 74 96 94 96 64
‘16’ 56 96 91 86 52,

Note: From 400 simulations, N=50 per trial arm. The Monte Carlo standard error is no larger than
2.5%.
Source: Heitjan et al. 1999a

get closer to the vertical axis. So as we move from top to bottom in
the table, we move towards the troublesome area. The coverage
probabilities of the methods refer to the proportion of times, in a
hypothetical series of repeated studies, that the interval covers the true
value. We want this number to be around 95%.

From the first column, you see that the Taylor series (delta method)
interval starts out doing very well when you are far from the vertical
axis, but then it falls apart very rapidly as you move toward the
vertical axis. Fieller's method works beautifully, in the sense that its
coverage probability is right around 95% no matter what the ICER is.
The remaining columns are some different versions of the bootstrap
approach. Bootstrap normal works pretty well but it starts to
deteriorate as you move toward the vertical axis and the same thing
happens with the Bootstrap percentile interval. The so-called
bias-corrected bootstrap is totally defeated; it is totally fooled by the
discontinuity and deteriorates very rapidly. So if you really want to
estimate a confidence interval for ICER, there are real problems.
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The response has been to accept that if the denominator is near zero
then there clearly is a problem, but it is easy to recognise, in which
case one would not compute the confidence interval for the ICER. In
practice this is a rational approach. The problem, however, is that if
you are going to devise a method for constructing an interval, and
publish it, then you are under an obligation to describe the method
in detail and to ensure that it really is a confidence interval.

In the statistics texts a confidence interval is a method for constructing
intervals that has the property that the coverage probability is at least
some pre-specified value (usually 95%) whatever the value of the
underlying parameter. That is, whatever the value of the parameter, the
interval will cover it in 95% of hypothetical replications. So if you do
not always get an interval, as in the Fieller method, then it is not
strictly a confidence interval. Or if the coverage probability is not at
least 95%, as with the other methods, then it also is not a confidence
interval, and it would be false to say that it was. Now if you
acknowledge that there are problems in certain areas, and you provide
a method for patching the method up so that the problems do not
harm the coverage probability, and you can prove this, then it is
acceptable to say you have a confidence interval. But just to leave
things up to the judgement of the potential users of the method is in
my opinion asking for trouble.

This leads us to the net health benefit approach, which Stinnett and
Mullahy (1998) proposed as a way of looking at cost-effectiveness
analysis. This is discussed in other chapters, so I merely wish to add a
couple of points. First, they proposed the net health benefit as
opposed to the net monetary benefit, so they have their number A in
the denominator. Second, the important thing about net benefit is that
it is really a utility measurement. Take again the point of view of an
insurer. He is trying to maximise the utility that he is offering to his
covered population because that is going to give him an edge over his
competitors. Because he is trying to maximise the benefit that people
are going to get, then the net health benefit is exactly what he wants
to look at.
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A strategy for selecting treatments would be just to calculate the net
health benefit and buy as much as possible of the treatments that offer
the greatest net health benefit. A new therapy is adopted if its
incremental net health benefit (INHB), compared to the current
standard, is positive. The insurer does this for each disease covered.
Andy Willan shows us equal-value curves, or isoquants, of INHB: they
are simply parallel lines with slope A in the cost-effectiveness plane.
That is, all the points on a line have an INHB of 1, 2, 3, etc. Hence,
ICERs in the north-east quadrant do make some sense because they
can be ranked unambiguously in that quadrant. Considering Figure
4.1, if the left half of the cost-effectiveness plan is excluded, cost and
effectiveness combinations can be ranked by ICER and the result is the
same as ranking them by INHB. So if you know which quadrant you
are in, all you really have to know at that point is the ICER. The
problem arises because some points in the north-east quadrant will
have the same ICER as points in the south-west quadrant, where in
fact the points in the north-east quadrant will have positive
incremental net health benefit and the south-west points will have
negative INHB. With ICER you cannot boil everything down to
one number.

How would one actually use this concept in cost-effectiveness
analysis? Its advantages are that the units are those of effectiveness, or
of currency if you prefer to use a monetary benefit, and these are
readily understandable. Statistical inference is straightforward, as Andy
Willan showed, because you are just taking linear combinations of
things. Even the difficulties of censored data can be overcome with
whatever estimation procedure suits your data. Then you can easily
combine Andy Willan’s ‘five numbers’ into the statistical inference
for the INHB. This gives an unambiguous ranking of the points, by
the INHB.

What is often put forward as a problem with this concept is that we
do not know the correct A, but I would suggest that the correct A is
the shadow price. An insurer who does not know his shadow price
needs to find it out, because that is really where the competition is.
For example, consider an older person whose children are grown up
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and who is approaching the stage where chronic disease is starting to
loom. Maybe his health is good now but some of his friends and
relatives may be developing cancer or diabetes or heart disease, and
he is concerned that he might get sick before too long. Such a person
might prefer to purchase insurance from a company that offers a plan
that has a very high INHB. He wants to make sure that if he does get
sick the doctors will be able to use all the latest technology in his
treatment. Whereas somebody who is younger, healthier, maybe has
children who are in good health, might prefer an insurance plan that
has a lower INHB and hence a lower premium to be paid. He does not
need to buy a more expensive insurance plan which guarantees to
cover high-dose chemotherapy for breast cancer and all the expensive
interventions that may be only slightly better than standard ones.

Let us say we have collected some data from a clinical trial and we are
trying to present it in a way that accounts for the fact that different
players may have different A values. One insurance company may
offer a de luxe package of insurance while another is offering a less
expensive package that will substitute generics more freely, and so on.
We want to analyse the data and present the analysis for both of those
people. Fortunately it is not difficult. Stinnett and Mullahy (1998)
originally proposed calculating intervals — be they confidence
intervals or Bayesian intervals — for a range of values of A, and then
presenting those. Ben Van Hout and colleagues (1994) proposed
several years ago plotting what we now recognise as the probability
that the INHB is positive as a function of A. He called it the
acceptability curve. It had a slightly different interpretation when he
first proposed it, but we have since recognised that this is just the
Bayesian probability that the INHB is greater than zero, plotted as a
function of A. So a user of this information can look at these pictures
and ask “what is the interval estimate for INHB for the A that I am
aiming for?’ If at that level of willingness to pay (A) the interval
indicates a positive INHB then, that treatment is something that the
insurer would want to include in his plan. Conversely, if the interval
lies entirely below zero at a particular A value, then the insurer would
not want to offer that treatment. It will depend on the A value.
The uncertainty will depend on the A and also the interval will
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depend on A, so insurers will have to decide on their own relevant
shadow price, A.

INHB from the perspective of an individual physician or a consumer
is a totally different matter. But from the standpoint of an insurance
company marketing its insurance plans as being optimal in some
sense, it makes a lot of sense to think about it this way; not with
kinked isoboles, as some have suggested, but with straight lines.

There is one more comment to make about the net benefit approach.
Many people are unhappy with the south-west quadrant because in
effect it represents selling health care, i.e. adopting an inferior but less
costly treatment. But we presume that the insurer starts from the
position that the object is to provide the greatest health benefit
possible. So by saving money using a less expensive treatment without
sacrificing too much health benefit, and applying that money
somewhere else where it will do more good, presumably buying
some other treatment that has a positive net health benefit, the total
benefit can be increased. Of course an individual who has, say, cancer,
would rather a more expensive treatment was adopted for his disease
even if the money could be better spent elsewhere, say, in treating
people who have diabetes. But for an insurer, either a public or private
insurer, that in principle is what will govern rational behaviour in the
long run.

So far this paper has been about what to estimate; let us now turn to
how to estimate it, particularly about modes of inference. Reference
has already been made to Bayesian inference, which has many
different possible manifestations. The one espoused here is something
one might call subjective inference. That seems a much better name
for it, saying that each individual summarises the data, according to
Bayes’ theorem, given his own prior distribution over the unknowns.
Probability distributions are used to summarise uncertainty about
parameters in models or about future quantities that one is trying to
predict; and hypotheses are evaluated by calculating posterior
probabilities. In my view, that is what Bayesian inference means.
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Compare that to frequentist inference, which says that we are going
to fix the parameters — even though we do not know their values —
and evaluate the properties of procedures in repeated samples. We
will then use the procedures that have the best properties. There is a
wide range of properties that one could look at, and of course one
might be concerned about performance under a range of different
assumptions about the process generating the data, and so on. It is
not a trivial matter to decide what properties one should emphasise
in a particular situation.

Now a major problem with frequentist inference is that it is really
restrictive when it comes to interpreting data. You cannot make
inferences without stating what your intentions were with respect to
the design and analysis of the study. Compare this with Bayesian
inference, which gives you more flexibility and freedom: you use the
posterior distribution on the parameters to calculate the probabilities
of the hypotheses are that you are interested in, however the study
was designed. You cannot really do that in frequentist analysis, which
I think gives a considerable edge to the Bayesian approach. This is
important in cost-effectiveness studies, where costs are changing,
new information is arising, you may want to synthesise data from
different studies, and so on. There is just no provision for this in
frequentist statistics.

Let me give a brief example of how one might implement a Bayesian
analysis. This is not intended as an example of an ideal Bayesian
analysis, in which one would have to carefully determine prior
distributions, or perhaps assess the sensitivity of conclusions across a
range of prior distributions. It is intended rather to give a sense of the
quantities that can be computed in a Bayesian analysis, and how they
would be interpreted.

Table 4.2 shows a summary of data from a trial comparing
interleukin-1 receptor agonist (ILlra) with placebo in the treatment
of sepsis (Gordon et al. 1992, Fisher et al. 1994). These are not the
original data but a summary I gleaned from other papers that
discussed the data (Laska et al. 1997, Van Hout et al. 1994). The cost
data are given in Dutch guilders (DFI).
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Table 4.2 Data from a clinical trial in sepsis

IL1ra Placebo
Mean cost (DFI) 35,100 33,720
Var (mean cost) 4,000 4,000
Survival at one month 0.84 0.56
Var (survival rate) 0.09 0.09
Cov(survival, cost) 0.34 0.34

From straightforward calculations we get a z statistic for cost of 0.24
(p =0.81), and a z statistic for survival of 2.20 (p = 0.023).Thus the
ILlra does not cost substantially more and seems to confer a
considerable, and statistically significant, survival advantage. How
then shall we evaluate cost-effectiveness?

Figure 4.2 Joint posterior probability density of effectiveness and
cost differences: comparing IL1ra to placebo
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Figure 4.2 is a graph of an approximation to the joint posterior
density of the effectiveness and cost differences, which is plotted on
the same axes as the cost-effectiveness plane. The contours, from the
centre outward, enclose 5%, 25%, 50%, 75% and 95% of the
probability respectively. For this analysis we have assumed a flat,
independent prior for cost and effectiveness differences, which is
unlikely to agree with any actual prior but, given the moderate size of
this dataset, should be a fair approximation to all but rather highly
concentrated priors.

In a Bayesian analysis, we evaluate a hypothesis by its probability
under the posterior distribution. Calculation using the prior in
Figure 4.2 gives 59.4% probability to the north-east quadrant (cost-
increasing trade-off), 0.3 % to the north-west quadrant (placebo
dominates), 0.9% probability to the south west quadrant (cost-
reducing trade-off) and 39.5% probability to the south-east quadrant
(IL1ra dominates). Thus we can be quite certain that ILIra increases
survival, but it appears to have little effect on cost.

Van Hout et al. (1994) proposed to summarise uncertainty about
cost-effectiveness with the cost-effectiveness-acceptability curve.
Although they considered a different interpretation, one can think of
the acceptability curve as a plot of the probability that the new
treatment is cost-effective (has a positive INHB) as a function of the
cost-effectiveness trade-off value A. Figure 4.3 presents the curve for
the sepsis data. The dotted line in this figure is at 95%, suggesting that
the probability that IL1ra is cost-effective exceeds 95% for any insurer
whose A exceeds about DF] 40,000 per survivor. Thus insurers whose
A is low, say DF1 20,000 per survivor, would be less convinced of the
value of IL1ra.

In an earlier paper (Heitjan et al. 1999b) we proposed to address the
ambiguity in ICER interval estimates by computing 95% Bayesian
probability intervals separately within the north-east and south-west
quadrants. These intervals, together with more standard Fieller’s
method confidence intervals, are presented in Table 4.3. The Bayesian
north-east interval has the interpretation that there is a 95%
conditional posterior probability, given that ILIra is more effective

50



BAYESIAN METHODS FOR ANALYSING COST-EFFECTIVENESS

Figure 4.3 Cost-effectiveness acceptability curve, comparing
IL1ra to placebo
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Table 4.3 Interval estimates of ICER from the sepsis data

Method Confidence set (DFl/survivor)
Bayesian (NE quadrant) (791, 63,400)

Bayesian (SW quadrant) (8,400, 4,580,000)

Fieller (95%) (-108,400, 55,900)

Fieller (98%) (-0, 135,200) v (324,600, )

and more costly than placebo, with the corresponding cost per
survivor lying between DF] 791 and DFl 63,400. The SW interval has
the interpretation that there is a 95% posterior conditional probability
that the cost saving per life foregone is between DFl 8,400 and DFI
4,580,000. The Fieller 95% interval spans the range —DFl 108,400 to
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+DFl 55,900. It is difficult to know how to interpret this because it
contains both positive and negative numbers, and moreover the
positive ratios have different interpretations in the north-east and
south-west quadrants. Note that the Fieller 98% confidence set is
actually the exterior of an interval. This occurs because the
effectiveness difference is not significant at the 2% level. It is more
difficult still to know how to interpret this.

To summarise the main points: first, I believe that the ICER has some
role in cost-effectiveness analysis but that in most cases it is not an
appropriate target for statistical estimation. The INHB resolves the
ambiguities of the ICER approach and is straightforward to estimate.
There is no single value of 1 that is relevant to all parties, but this is an
essential element, not a disadvantage, of the INHB approach.
Moreover, I believe that the Bayesian mode of inference has
advantages over the frequentist mode of inference in estimating
cost-effectiveness. Although in many situations the two modes give
answers that are practically indistinguishable, one must always bear in
mind the interpretation of the estimate and when one does so the
difference is more than academic.

Finally, a little speculation about the future of research in this area: in
their chapters, Andrew Willan and George Carides discuss modelling
more complex data structures such as censored data. This is an
important direction. Most of the methodological work published in
this area so far has assumed that there is a simple, uncensored cost and
effectiveness datum for each person in the study. But many clinical
trials of chronic diseases have survival as the major endpoint, and in
most studies the survival variable is potentially censored, in the sense
that when the study ends some of the participants are still alive. For
these subjects you do not know the survival time, just that it is greater
than their survival so far. When survival is censored, then health care
costs are censored too and one needs to account for this in the
analysis to avoid bias. So the methods that Willan and Carides describe
are important and are the logical next stage in this development.

Some examples of nonparametric modelling are presented in this
book, in the sense that both Willan and Carides describe estimation of
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the survival curve or cumulative distribution of cost directly, without
the aid of parametric statistical models. Often one can gain some
efficiency of estimation, not to mention scientific insight, by using
parametric models. This idea is somewhat out of vogue in
biostatistics, but I believe that there continues to be value in
parametric models, provided one subjects them to appropriate
scrutiny in the model fitting process.
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Bayesian sample size calculations

TONY O'HAGAN!

The subject of this paper is the problem of sample size estimation for
cost-effectiveness analysis, and the Bayesian approach to this problem.
The Bayesian approach is essentially as easy to implement as the
standard frequentist calculations, while giving a little more insight
and flexibility than the standard frequentist approach.

Consider this problem: a trial is to be designed to compare two
treatments. Both efficacy and cost will be measured for each patient
in the trial. How many patients should there be in each arm of the
trial? Typically it is assumed that equal numbers of patients will
be recruited to each arm, but this does not have to be the case.
Nevertheless in this example we follow convention and present the
same number of patients for each treatment; call this n.

We will judge cost effectiveness by the net monetary benefit, 3(K),
of switching from treatment one to treatment two, defined as

B(K) =K A —A

where A, is the true cost difference between the two treatments and
A is the true effect difference. What we are basically interested in is
whether B(K) is positive, in which case treatment two (the new
treatment) is more cost-effective than treatment one (the control).

The above formula emphasises that the net benefit is a function of K,
which represents what the health care provider is prepared to pay for
health gain. This can apply to the National Health Service provider or
to insurers; we can refer to them in general as health care purchaser.
K represents what the health care purchaser is prepared to pay in
order to obtain an increase of one unit in efficacy. I use K rather than
the commonly employed A for this quantity since in statistics Greek
letters tend to be reserved to represent unknown parameters, and the

! The author gratefully acknowledges the assistance of John Stevens of AstraZeneca
Research and Development, Charnwood, England.
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willingness to pay is not an unknown parameter in the sense of
something to be estimated from the present analysis. Note that K
must be specified, that is, you have to specify what the trade off, or
exchange rate, is between the two value measures: money and health.
Since the sample size will also depend on K, it has to be specified at
the design stage of an evaluation — although varying K will show how
the sample size varies as a function of the willingness to pay.

There are two stages to the study, the design stage and the analysis
stage. Sample size calculations have to be at the design stage, before
the data are collected. Statisticians should be involved at both the
design stage and the subsequent analysis of the data stage, i.e. right at
the beginning and right at the end of the trial. Note that if you are a
frequentist statistician and you are worried about interim analysis,
you must not let the statistician get involved in the middle —
very strange!

When we get the data and do the analysis, we are seeking to prove in
this case that the net benefit of the new treatment is positive. The
desired outcome is to be able to report a probability of at least w that
treatment one is more cost-effective than treatment two. What this
probability standard is will depend on whether you are a Bayesian or
a frequentist, but in both cases you have a standard of proof that you
are aiming for at the analysis stage. The design of the study will
determine whether we have enough data to reach the standard we set
for the analysis objective. We want to have a good chance, say 9, of
being able to report the desired outcome. So there are two criteria:
when we do the analysis, what sort of standard of proof do we want
to set up; and when we design the study, how confident do we want
to be that we are going to be able to reach this standard?

Hence there are two probabilities in this problem: w, the standard of
proof in terms of how confident we are in the differences between the
treatments; and 8, the confidence with which we expect to achieve
this standard of proof.

From a frequentist point of view the analysis objective will be
formulated as follows. We wish to reject the null hypothesis of no net
benefit at the 100(1 — w)% level of significance. So a large w will
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correspond to a good result since it will correspond to a small
significance probability: for example w = 0.95 corresponds to the
usual 5% significance test.

The Bayesian formulation is somewhat different. Bayesians will want
to have at least a 100w% posterior probability that B(K) is positive.
So the Bayesian has a much more direct statement at the end of their
analysis. Instead of saying “I'm going to reject the null hypothesis at
the 5% level of significance”, the Bayesian says, “I am 95% sure that
this treatment has a higher net benefit, or has a positive incremental
net benefit”. Put even more simply: “I am 95% sure that the treatment
is better”. For both Bayesian and frequentist, however, the analysis
objective is to specify the value, 95% in this case, which serves as the
standard of proof.

The design objective in the frequentist framework is the power
calculation. The frequentist says: “I want a sample size large enough
so that for some particular assumed true value of net benefit (the
frequentist has to assume a value for the alternative hypothesis) I can
be 80% sure of being able to get a significant result”. This is the
frequentist power calculation with 6 = 0.8.

The Bayesian statement is different in an important way. The Bayesian
says “I want to have an 80% chance of being able to demonstrate that
net benefit is positive”. The crucial difference is that the Bayesian is
not assuming any particular value for the ‘true value’ of B(K). The
Bayesian does not have to make an assumption about what the true
value is because he averages over the prior distribution instead. This
will be explained in more detail below.

At the analysis stage the frequentist and Bayesian objectives are rather
similar, particularly if we use non-informative prior distributions.
In general, in simple problems, a Bayesian analysis with a non-
informative prior, a weak prior specification, will correspond pretty
closely to a standard frequentist analysis. In that case the significance
probability will probably be very similar to a Bayesian posterior
probability. So at the analysis stage the alternative presentations are
going to be pretty much the same.
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In fact most people interpret the frequentist statement in a Bayesian
way. They say “I've rejected this null hypothesis at the 5% level”,
meaning “it’'s 95% sure to be false”. They always interpret things in
the Bayesian way because that is what they want to be able to do:
Bayesians always answer the question, while frequentists do not!

At the design stage, however, the frequentist and Bayesian objectives
are quite different. The frequentist approach fixes the parameters at
more or less arbitrary values. In fact the frequentist has to pretend that
he actually knows what is going on exactly. By contrast, the Bayesian
accepts that there is uncertainty about the true state of the world, and
instead attempts to model this uncertainty through prior beliefs. So
the Bayesian objective requires a probability & of the desired analysis
outcome averaged over the prior distribution of the parameters. When
we put the two stages together, the frequentist makes a statement such
as “we wish to have 70% power to reject the null hypothesis that
B(K) = 0 at the 5% level, if the true value is say, B(K) = £2,800”.The
Bayesian statement is shorter “we wish to be 70% sure of obtaining a
95% posterior probability that S(K)>0".

I firmly believe that everybody is naturally a Bayesian unless
somebody has got at them and taught them something else. When
advocating a Bayesian approach as I do, we have got to think about the
prior distribution and for many people this is a stumbling block.

Various possibilities come to mind as to how you would formulate
the prior distribution. A pharmaceutical company or a device
manufacturer trying to set up a trial will naturally use the knowledge
and beliefs they already have, perhaps from earlier trials. Alternatively,
a trialist might want to take a broader view than that of the company
that is trying to market the product, in which case they would seek
out some more sceptical opinions from the wider community. There
is also the possibility of using non-informative prior information; put
simply: “I'm not going to use my prior because it gets me into
trouble”. Or, taking a totally sceptical view, one could start from the
belief that the drug or device is actually harmful, and try to prove
otherwise. For example, in the UK framework, if we are trying, say, to
persuade the National Institute for Clinical Excellence (NICE) that a
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particular treatment is cost-effective, it would be interesting to use
their prior information. After all, NICE should have some prior beliefs
(otherwise why would the treatment be under consideration?) and
these should be used when NICE is making its judgements. This prior
information should somehow be representative of the community’s
views about treatment, or at least of informed people’s views.

So while there is a whole range of things that we might do in relation
to specifying prior information, these are not appropriate to the same
degree at the two stages of the study. At the analysis stage, when I am
trying to present a case to somebody else, to accept my drug or my
new device or my new procedure, then I probably do not want to use
my views about it, because they might be seen to be prejudiced. So
there is a question mark about whether I want to use the company’s
opinion and there is also a question mark about whether I want to use
the community’s opinion. At the analysis stage we might even be
persuaded that regulatory bodies should be using a non-informative
or a sceptical prior.

However, at the design stage it is a totally different story. At this point
I need to have my own beliefs about what is going to happen in this
trial. It is impossible to design anything if you have no prior
information. So a non-informative prior approach to the design stage
is simply not an option. In fact, the frequentist approach to sample
size calculation is based on exactly the opposite of what is known. The
frequentist at the design stage is pretending to know the true
parameters underlying the power calculation, and so assumes that the
true value of B(K) is known with certainty.

So in the Bayesian approach we are going to allow different prior
distributions at the two stages: design and analysis. At the design stage
the study will be set up based on my best knowledge about what is
going to happen when I run this experiment. However, it is set up in
such a way that at the analysis stage I am going to use a different prior
distribution — the one that I am going to use to try and persuade
people with. So the analysis prior will typically be non-informative,
sceptical, perhaps some kind of consensus opinion of a community.
Whereas the design prior should definitely be based on the best
knowledge I can find — what it is that I actually believe.
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To illustrate the Bayesian approach I will present a simple example,
and then try to explain again why the Bayesian approach is different
and gives you a rather more helpful answer than the frequentist
approach. Briggs and Tambour (1998) presented a frequentist analysis
based on the following hypothesised true values of cost and effect
differences between the two treatments of A, = 1,200 and A, = 0.8
respectively. Setting K at 5,000 gives the hypothesised true net
benefit as B(K) = B(5,000) = 2,800. They set a 5% two sided test,
70% power and they came up with equal sample sizes of 762 using
a standard frequentist sample size calculation.

Now we employ a Bayesian formulation using a non-informative
analysis prior. That is, at the analysis stage we are going to do
essentially the same as a frequentist. Therefore we are designing with
exactly the same objective at the analysis stage, but at the design stage
we put a prior distribution on the expectation.

Typically when we go into these sorts of trials we may very well have
a reasonable idea about what the effects or efficacy improvements will
be from the results of other experiments. At this point, we probably
know much less about how the costs are going to work out, so the
costs start out being much more uncertain. People often talk about the
problem of setting up these sorts of trials, and say that trying to prove
cost-effectiveness is more difficult because costs are more variable.
But the problem is not only that, it is that you start with so much less
knowledge about what costs are going to be. That is what is really
contributing to this large variance or standard deviation.

In this Bayesian example we set w = 0.975 because we are going to
use a one sided test and @ = 0.975 equates to a two-sided test with
w = 0.95.We set 6 to 0.70, but note that although this corresponds
to the frequentist §, this is a different 70% to the 70% power, because
the design objective for the Bayesian framework is different. Working
this Bayesian power calculation through generates equal sample sizes
of 1,048 for the trial.

The reason why we end up with a larger sample size than with the
frequentist approach is because of the different framework for the
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design stage. Figure 5.1 shows the design prior distribution for this
problem with a mean net benefit at 6,800, but a large standard
deviation, so in fact I only start with a probability of 0.774 that
this will actually prove to be more cost effective (i.e. p[B(K)>0] =
0.774). This is important because this is what is used in the sample
size calculation.

Figure 5.1 Design prior for the cost-effective trial example
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If we consider power for a moment, some power curves are shown in
Figure 5.2.The lowest curve is a power curve for a small sample size,
the middle one is for a moderate sample size and the top curve
corresponds to a large sample size. What does the frequentist do? The
frequentist fixes a particular value on the x-axis, say a net benefit of
2,800 from the above example, specifies a power level from the y-axis
and finds where they cross in order to determine the sample size
required. In terms of Figure 5.2 it is the sample size of 762 that is
needed to get the power at 2,800 up to 0.7, which puts the
frequentist somewhere between the top and middle curves.
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Figure 5.2 Power curves for three different sample sizes
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However, in the Bayesian framework we put these two things
together, as shown in Figure 5.3. Instead of fixing a value on the
x-axis and then trying to get the right power, we average the powers
with respect to the prior distribution. That is, we calculate the average
power for each of these curves with respect to the prior. You can see
that the average power for the lowest power curve is going to be very
low, because most of the time where we expect 3(K) to be, there is
low power. The expected power averaged across the prior for each
power curve gives the Bayesian analogue of the power calculation and
can be termed the assurance of getting the desired outcome.

For the lowest power curve in Figures 5.2 and 5.3, the Bayesian
expected power or assurance is just 0.15, for the middle curve this
rises to 0.49 and for the top curve the assurance is 0.70. This is the
prior probability for getting the desired result. We have had to go to
a larger sample size in the Bayesian analysis in order to get the
Bayesian assurance figure of 70%. However, the frequentist analysis is
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Figure 5.3 Integrating the design prior and power curves:
Bayesian assurance
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conditional — the frequentist only has their specified power level if the
true state of the world is as they specified. The Bayesian on the other
hand incorporates the overall uncertainty in the true state of the
world and ends up with an unconditional probability, a 70% chance
of showing the desired result.

In practical application of the frequentist sample size calculation,
choices proceed with much ad hoc-ery and fiddling. Bayesians do not
have to do this, they simply state what they believe and then design
an analysis that gives a good chance of getting what they want.
However, it is harder with this framework to get the same level of
assurance. It is harder to get up to 70% because we cannot get past
77.4%, the original prior probability that the intervention is cost-
effective. This original probability acts as a ceiling to the assurance
level, which is why the Bayesian needs a greater sample size.
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The Bayesian analysis has given a larger sample size, but it assures a
70% chance overall of demonstrating that treatment two will be more
cost-effective than treatment one, partly because it recognises from
the beginning that there is a good chance (100 - 77.4 = 22.6%) that
treatment two is really not more cost-effective. The Bayesian approach
allows considerable flexibility to represent the real problem because
we do not then have to assume that we are going to analyse the data
with a weak prior. After all, we may be designing this study for
internal company purposes, maybe to persuade our boss, and
therefore we might want to start with his prior. We can choose
whatever we like for our prior beliefs at the analysis stage, and we can
also choose our prior beliefs at the design stage, and fix the two
criteria, w and 6. The design objective is expressed as an overall
assurance instead of requiring an assumed, more or less arbitrary, true
effect. It says overall there is a 70% chance that the desired outcome
will be proven, not that there is a 70% chance if the true state of the
world coincides with your assumption, which we might think very
unlikely. If we do not believe net benefit is exactly 2,800 what is the
point of conditioning the sample size calculation on that?

In conclusion, I have tried to show that the Bayesian approach offers
new insight into the problem of determining samples size for a
cost-effectiveness trial, by clearly differentiating the analysis and
design objectives. The method I have described then gives added
flexibility by allowing different prior specifications at the design and
analysis stage.

The two features together have allowed us to view the standard
frequentist approach in Bayesian terms. The two approaches have
similar analysis objectives and can be made to coincide at the analysis
stage by setting a weak analysis prior. However, at the design stage the
Bayesian design objective is in terms of assurance, which is quite
different from the frequentist’s power calculation. In essence
assurance is expected power with respect to the prior distribution, but
its value lies in the fact that we do not have to make an arbitrary
assumption of a value for the true net benefit. The Bayesian and
frequentist approaches can only be made to coincide at the design
stage by adopting an unrealistically strong design prior.
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Designing a trial with a given assurance of a positive outcome is more
natural, and should be more useful to decision-makers, than the
traditional power calculation.
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Methods for analysing censored cost data

GEORGE W. CARIDES?

The presence of censored observations in cost data collected alongside
clinical trials poses a particular problem for economic analysis. In this
paper, the problem of censoring is discussed together with some of
the issues and challenges, both statistical and economic, of analysing
censored cost data. A review of recently published methods for
analysing censored cost data will be presented and a case study of a
heart failure trial will be employed to illustrate and compare the
methods. In addition to application of the methods in actual
datasets, the results of a simulation study with respect to the
performance of the estimators will be presented. The emphasis
throughout is on the intuition behind the methods, keeping
mathematical formulae to a minimum.

The general research question addressed here is: do patients who
receive treatment A incur lower costs than those treated with B? Note,
however, that it is very important to specify the time horizon over
which costs are to be compared. Is it the entire lifetime of the patient,
is it the follow-up period of the trial, or is it a fixed period within
the trial? For example, are we interested in comparing the costs over
five years of follow-up or over 10 years? In an ideal world, the
clinical trial would be designed to address this economic research
question with correspondingly large sample sizes, no missing data,
and complete follow-up on all the patients (i.e. nobody would
be censored).

In reality, this ideal case rarely exists. More commonly, a trial is
designed to answer a clinical research question and the time horizon
may be too short to answer the health economic question, whether
that relates to cost or cost-effectiveness. The sample size may also be
inadequate for precise estimation of the health economic endpoint(s)

2 The author gratefully acknowledges the assistance of Joseph F. Heyse and John
R.Cook, Merck Research Laboratories.
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even though it might be adequate for the clinical endpoints. Typically,
data are not normally distributed but highly skewed, include outliers,
and exhibit a high degree of variability. There is also the potential for
missing data and for incomplete follow-up or censored data.

Censored data usually occur when there is a staggered start date to a
clinical trial. For example, a trial may last five years but not all patients
enter the trial at the same time. For the patients who enter the trial
early, complete five-year follow-up data may be available. But a patient
who enters the trial six months prior to the trial’s termination date
and does not die before then only generates six months worth of cost
data. This patient is censored with respect to the five-year cost of the
treatment that is of interest.

It is worth distinguishing two situations that may arise in relation to
the collection of the cost data. Sometimes we have the cost history
available; i.e. we know when the costs occurred. For example, cost
data may have been collected at monthly intervals. In other cases we
may only know the total cost per patient; i.e. we may only know the
cumulative cost at the time of death or censoring. The analytical
methods that are appropriate will be dependent upon the type of data
that are available. In many cases, it is not the cost data themselves that
are captured but the level of resource utilisation, which requires an
external price per unit of resource to be applied to generate a cost. So
we may attach a price for a hospitalisation to each recorded inpatient
episode or we may attach a per-diem cost to the recorded length of
time that the patient was in hospital in order to generate a cost.

The clinical trial to be discussed as a case study is the ‘Studies of Left
Ventricular Dysfunction” (SOLVD). This was a randomised controlled
clinical trial conducted with symptomatic heart failure patients who
were randomised to either active treatment (enalapril) or placebo
(SOLVD Investigators 1991). The clinical endpoints were mortality,
hospitalisation and incidence of myocardial infarction. There were a
total of 2,569 patients with a minimum of two years and a median of
2.9 years of follow-up. One goal of the health economic evaluation
was to estimate and compare the three-year mean cumulative costs of
the two treatments.
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As is typically the case, the cost data were very right-skewed with
variance increasing with greater survival time (heteroskedasticity).
There was also evidence of a stratum dependent cost versus survival
time relationship. Censoring was present with respect to both survival
time and cost. A total of 22% of the patients, after three years, were
censored in that they were followed for less than three years and had
not died. If a patient had died and we observed the death, we would
have the complete information on that person’s cost. After death the
cost would be zero.

It is very important when conducting an economic evaluation to
conduct exploratory data analyses. Plotting the data in various ways
can uncover features that may help to analyse and properly model the
data. Figure 6.1 gives the simplest of plots: the frequency distribution
or histogram of the total three-year cost for all the patients. This plot
clearly shows the skewed nature of the cost data. Most cumulative

Figure 6.1 SOLVD example — histogram of total 3-year cost ($US)
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costs are concentrated below $25,000 but a few patients have much
greater costs. The most expensive patient incurred over $200,000
after three years, while many other patients incurred only a few
thousand dollars.

These kinds of data present problems in terms of usual normal theory
assumptions, so it is useful to look at such data in a different way and
perhaps uncover different features. Figure 6.2 presents a histogram of
the same data after having taken the natural logarithm of the cost. We
would not necessarily analyse the data on the transformed scale, but
this plot does certainly point out some additional features. In
particular, the figure reveals that the distributions are possibly
bimodal, with patients separating into two main groups. In fact, an
apparent bimodal distribution often indicates a mixture of two
different distributions. For these data the difference is between those

Figure 6.2 SOLVD example — histogram of log total 3-year
cost ($US)
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patients who were hospitalised prior to the end of three years and
those who were not. The patients who were hospitalised incurred
much greater costs than the patients who were not hospitalised.
Among those not hospitalised, the Enalapril patients have higher
cumulative costs because their cost includes the study drug cost.

Rather than simply looking at the univariate cost or transformations
of it, it is also useful to look at plots of one variable versus another. In
Figure 6.3, total cost after three years is plotted against follow-up
time, with the plus symbol indicating censoring and a nought
indicating death. The patients designated with a plus sign at three
years were observed to be alive after three years of follow-up.
Although in terms of survival they would be considered censored, in
terms of cost they are complete because we are interested in the cost
after three years of follow-up. A plus sign prior to year three indicates

Figure 6.3 SOLVD example — total 3-year cost vs.
survival time (years)
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a patient for whom complete survival and cost were not available, i.e.
who was censored for both survival time and cost.

If we can uncover some sort of relationship between the total cost and
the time of death, we may be able to model that relationship in order
to estimate the cost more efficiently. Thus we could obtain narrower
confidence intervals and greater power for our task to detect
differences between the treatment groups. However, it is not clear
how we might use a regression model in this instance. A simple linear
regression would be inappropriate given the degree of uncertainty as
to the cost/survival time relationship and the dramatic increase in
variability with greater follow-up time.

Consider Figure 6.4, which plots the log of the total cost versus
follow-up time. Again the same split between patients who were
hospitalised and those that were not is clearly in evidence. Here we

Figure 6.4 SOLVD example — log total 3-year cost versus
survival time (years)
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Figure 6.5 SOLVD example — mean monthly cost by month
post-randomization, conditional on survival
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see much clearer relationships between cumulative cost and follow-
up time for the patients who were hospitalised and those that were
not hospitalised. This illustrates how sometimes we would want to
make some sort of transformation, analyse the transformed data, and
then back-transform.

Another way to look at the data is shown in Figure 6.5, which shows
the mean monthly cost over time conditional on survival, together
with a nonparametric regression or smoother fit to the data (Loader
1999). These nonparametric smoothers are very useful, not only to
visualise data relationships but also to estimate the mean cumulative
cost. Conditional on survival the enalapril group seems to have lower
costs by month than the placebo group, even though the enalapril
group includes cost of treatment while the placebo group does not.
Again the explanation lies with hospitalisations: there were more
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hospitalisations in the placebo group than there were in the enalapril
group; more than enough to offset the cost of the study medication
in the enalapril group.

Our goal is to estimate and compare the mean costs per patient when
information on cost for some patients is incomplete or censored due
to follow-up times being less than the chosen time horizon of the
clinical trial. So if the chosen time horizon is three years and a patient
was followed for only six months, that patient is censored. A key
question is whether patients’ loss to follow up is covariate dependent.
This is important because some of the methods are valid only if
censoring is purely administrative, in which case hypothetical
extension of the trial for enough time would result eventually in
complete follow-up on all patients. However, if patients are dropping
out of the study, say, because they are doing poorly, then the censoring
mechanism is informative rather than administrative.

Several valid estimation methods exist for application to clinical trials
where censoring is administrative (Lin et al. 1997; Bang and Tsiatis
2000; Carides et al. 2000; Strawderman 2000). For clinical trials
where patients are dropping out due to some covariate-dependent
reason, modification of these methods can be considered (Lin 2000).
Further study is required, however, to assess the usefulness of such
modifications in practice.

The focus of this chapter is on the case where administrative (i.e.
uninformative) censoring exists. There are two general strategies for
estimating the mean cost in this case. One class of methods is Inverse
Probability Weighting (IPR), which is based on a strategy of
weighting the costs more as more censoring occurs. The basic
estimator, when cost histories are not available (i.e. we simply have a
total cost per patient) is given by

1
(1) N IE\NiCi

where N is the sample size, C is the total cost for the ith uncensored
patient and W is a weight attached to the cost to reflect the proportion
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of censoring. In this estimate the total cost for each patient for whom
there is complete follow-up is weighted proportionally to the amount
of censoring at that time. Near the beginning of the study there will
be very little censoring so the weight would be one or close to one.
As time progresses and more censoring occurs, the costs of
uncensored individuals are multiplied by a greater weight W. In
effect, each uncensored patient has to represent others who were
censored. So if the weight is three that means that a patient’s cost has
to represent himself plus two others.

The second version of the estimator can be used when cost histories
are available. In this case, the data are partitioned into | time intervals
and the estimator becomes

1
(2) N ]EEiWij G

where C; is the cost of the ith patient in the jth interval. In effect, the
estimator (1) is computed for each interval and the sum is taken
across the total number of intervals.

The other methods are conditional methods for censored data:
conditioning cost either on survival or on death, multiplying by the
probability of survival or death, and summing up. One published
method to provide a way to estimate the mean cost under censoring
(Lin et al. 1997) involves partitioning the full time period into
intervals, perhaps years or months, depending on the nature of the
cost data collected in the study. The average cost conditional on
survival is calculated and then multiplied by the probability of
survival. The method assumes that the censoring can only occur at
interval cut points. So if the data on cost is available over years, and
someone is lost to follow-up or censored in the middle of the year,
then this method will contain some bias. We return to the Lin method
later in the chapter.

A second method is one that I and colleagues have proposed and
which we call the two-stage conditional method (Carides 1998;
Carides et al. 2000). This method considers that total cost is
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comprised of survival time and error. Total cost is treated as the
dependent variable and survival time as an independent variable,
which has an impact on, or influences, the cost. This formulation
acknowledges that simply knowing a person’s survival time is not
enough to determine the total cost precisely.

The mean cost is estimated in two stages. In the first stage, the average
cost conditional on death is estimated — this is the regression
component or the average cost given death. Here either a parametric
regression model (such as ordinary least squares, possibly after some
transformation) or a non-parametric smoother can be employed. The
authors have found that in the biostatistics community, at least in the
US, statisticians are reluctant to accept parametric regression models
for estimation problems involving censored data. They have argued
that the method may work well when the regression model is
adequately identified, but that if the model were incorrectly identified
the method would yield biased estimates. Therefore, we employed a
non-parametric smoother, as can be seen in Figure 6.5, which shows
the monthly costs over time together with a non-parametric fitted
curve. The use of non-parametric regression allows us to utilise the
information from the data without making strong parametric
assumptions. Fundamentally, this is an issue for the analyst; if the
analyst is confident that he has specified a parametric model that is
reasonable then this can be used. Alternatively, the analyst may use a
non-parametric smoother in situations where there is less confidence
as to a reasonable model.

In the second stage, the probability of death at each one of those
survival times is estimated. We employed the Kaplan-Meier estimator
as a non-parametric estimator of survival, but the survival function
could alternatively be estimated using a parametric model. The two-
stage estimator may be expressed as

() = I’@Z@(t;){é(tj_l) -S(t)} +Y.SL)

where | is the sample average fixed initial, or start-up cost, G (t) is
the estimate of mean total cost conditional on death at time t;, §)
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is the Kaplan-Meier estimate of survival, and Y, is the sample average
cost of patients surviving to time L, the chosen time horizon for the
study. The initial cost | does not depend on survival time and may
include items such as diagnostic testing undergone just prior to
entering the study.

In extensive simulation experiments, we have found efficiency gains
from our method over the Lin method, which come about by
exploiting the relationship between total cost and survival time. The
Lin method essentially ignores that relationship. By exploiting the
underlying relationship we can gain efficiency, i.e. reduce the
variance. Other things being equal, we would like to have an
estimator with lower variance over an estimator with larger variance.
That gives us more precise estimates and greater power to detect
possible differences between treatments.

Another advantage of our method is that it does not assume that
censoring only occurs at interval cut points. Censoring can occur at
any time. The method can also be extended to utilise the cost history
where that is available, i.e. when we have information on the person’s
cost over time, not only at the time of death. Additional covariates
other than survival time can be included into the model such as
baseline patient characteristics. The form of the two-stage estimator
which utilises the cost history is

@ = 1+ [ S0

where f(t) is the estimated cost at follow-up time t conditional on
survival to that time.

Table 6.1 shows a numerical example based on hypothetical data for
20 patients to illustrate how the simple weighted estimator (I) is
calculated. Of the 20 patients, seven were censored prior to the time
horizon of interest, L, which is 10 years. The goal is to estimate the
10-year mean cost. Seven of the patients are censored because they
were followed for less than 10 years and they had not died. The
remaining 13 are the patients whose costs we are going to utilise.
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Table 6.1 Estimation of 10-year mean cost — weighted estimator

Patient Survival Censoring Weight Total cost w-TC
number time probability*  (w) (TC)
1 0.1 0 1 17,509 17,509
2 0.2 0 1 12,444 12,444
11 5.9 0.3 1.4 34,511 47,807
12 7.8 0.7 8.5 65,724 227,615
13 10.0 0.7 85 48,772 168,907

Ay = (l/N)Ew- TC =39,244

* Estimated by Kaplan-Meier, reversing the roles of censoring and death.

Patient number 1 was observed to have died at time 0.1 years. At that
time the probability of having been censored was zero. The censoring
probabilities are calculated using the Kaplan-Meier method, reversing
the roles of censoring and death. That is, death is treated as a
censoring event for time to censoring At time 0.1 years the
probability of censoring was zero, and so the weight we attach is 1.
When we multiply the weight by the total cost of that patient we of
course get back to the total cost of that patient, which means that
patient number 1 is representing only his own total cost.

As we move towards increasing survival times the probability of
patients being censored increases. For example, in Table 6.1 patient
number 11 had a survival time of 5.9 years; the probability of being
censored prior to that time was 0.3. So notice here that the weight has
gone up, the weight is now 1.4 (the reciprocal of 1 - 0.3). See Bang
and Tsiatis (2000) for the details of how to compute the weights. The
point is to understand that as the amount of censoring increases the
weight must go up so that the patients who were observed after that
point can represent not only themselves but also some of the censored
patients. In my example, for patient 11 we inflate their costs by 40%:
they are representing themselves and 40% of somebody else. So it
goes on: with increasing levels of censoring the weight increases.

76



METHODS FOR ANALYSING CENSORED COST DATA

When we sum up these weights times the total costs and divide by
the number of patients we get our estimate of average 10-year costs
using the weighted estimator of Bang and Tsiatis, namely $39,244.

Using the same data, we now apply the two-stage method. Figure 6.6
forms the basis of the first stage of the two-stage estimator. Plotted in
the figure, for the 12 patients who were observed to have died prior
to year 10, is the total variable cost: i.e. total cost less any initial or
diagnostic cost that would be assumed to be fixed in that it would not
depend on survival time. So variable cost in this context is related to
survival time; there may be variation between patients in other costs,
but if these are not related to survival time they are assumed fixed.The
curve in Figure 6.6 is a non-parametric regression through these data.
Non-parametric regression provides a method to estimate a
relationship that is much more data dependent than an assumed
parametric model.

Figure 6.6 Total variable cost versus survival time with smooth
fit (locfit*)

50,000
40,000
30,000

20,000

Total variable cost

10,000

0 1 1 1 1
0 2 4 6 8

Survival time (years)

*locfit, available from: http://cm.bell-labs.com/stat/project/locfit
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Based on this fit of the total variable cost, for each patient we can
obtain the fitted variable cost and this is shown inTable 6.2. So for the
patient with a survival time of 0.1 years, from the curve we have a
fitted variable cost of $3,256. The second stage is to use the Kaplan-
Meier estimate of the probability of death. The estimated probability
of dying at time 0.1 years is 0.05. We then multiply the fitted variable
cost by the probability of death, and do that for every patient, and
then we sum up the resulting final column of figures. What we obtain
is the average variable cost conditional upon death, conditional upon
dying before 10 years, which in this illustrative example would be
$23,144. If we now add to that the average fixed cost, i.e., in this
example the average of the diagnostic costs, and also the average
variable cost conditional upon survival to the end of the tenth year,
we have obtained our estimator of the 10-year mean cost. We can
see that although the methods look quite different, the resulting
estimates are very similar; our two-stage estimate was $38,579
while the Bang-Tsiatis estimate was $39,244.

Table 6.2 Estimation of 10-year mean cost — two-stage estimator

Survival Fitted* variable Prob. of VC.p
time cost (VC) death (p)**

0.1 3,256 0.050 163
0.2 4,466 0.050 223
5.1 33,160 0.069 2,297
5.8 33,984 0.069 2,354
7.8 53,654 0.173 9,291

AVC |death =2 VC.p = 23,144

firs = Y AFC + AVC|death +AVC|survival

= 8,923 + 23,144 + 6,506

= 38,579
*|ocfit, available from: http://cm.bell-labs.com/stat/project/locfit
**Estimated by Kaplan-Meier.
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The two estimators described above are the simple weighted
estimator and the two-stage estimator. The weighted partitioned
estimator is similar to the simple weighted estimator but we can
utilise it when we have cost history information. Similarly, where we
have information on cost over time for each individual patient we can
utilise that information and partition our time period to get a
partitioned two stage estimator that we refer to as two-stage AS, or
average smooth, estimator. The two-stage method first averages the
daily costs or monthly costs and then applies the parametric
regression or smoother to these average costs. If we have information
on cost over time, we can still apply the weighted and the two-stage
estimators, but we can also apply the weighted partitioned estimator
and the two-stage AS estimator. Table 6.3 shows these four methods
applied to the SOLVD data example. The three-year mean costs are
quite similar and all show a cost-saving for the enalapril arm of the
trial compared to placebo. Note that the confidence intervals differ
somewhat, reflecting differences in the variance properties of the
estimators, which is discussed below.

With more than one method available for tackling a problem it is
natural to want to see how well each method works in practice. It is
not sufficient simply to apply each method to a single dataset since

Table 6.3 Application of different estimation approaches to the
SOLVD example — 3-year mean cost estimates ($)

Method Enalapril Placebo A 95% confidence
interval

Weighted 11,324 12,898 -1,574 (-3,076, -263)
Weighted

partitioned* 11,346 12,909 -1,563 (-3,242, 55)
Two-stage 11,201 12,931 -1,736 (-3,113, -317)
Two-stage

— AS** 11,184 12,786 -1,602 (-2,920, -423)

*Based on yearly intervals.
**AS = ‘average/smooth’.
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there is no gold standard — the true mean cost is unknown. However,
if we conduct a simulation study (sometimes called a numerical study,
or a Monte Carlo simulation) we can specify the true mean that is to
be estimated and then generate data which the different methods
employ in order to estimate this mean. Repeating this process a large
number of times lets us see how well the methods may do in practice.

In our simulation study, we set the task of estimating the 10-year
mean cost where survival times are distributed according to the
exponential distribution with an average survival time of six years.
Censoring time is distributed uniformly from 0 to 12.5 years and as
a result we have approximately 38% censoring prior to time 10 years.
We have 100 patients and the total cost for each patient is made up of
an initial diagnostic cost, annual variable costs and costs associated
with death. We assumed that the costs would follow an autoregressive
one (AR1) structure with year-to-year correlation varying from zero
to one. The AR1 structure simply refers to how the costs vary from
one year to the next. If the costs are positively correlated a patient
with relatively high costs in the first year will tend to have relatively
high costs in the second year, etc. If the patient had relatively low costs
in the first year then they are likely to have relatively low costs in the
second year and so on. Zero correlation would mean no
correspondence at all between a patient’s costs in successive years.

In order to compare the methods we ran 5,000 simulations, each
time generating a data set of 100 patients, and estimated the mean
10-year cost using the four different methods. For each estimator we
took the average across the 5,000 trials in order to provide an average
figure for the accuracy of each estimator. The closer this average is to
the assumed true mean, the more accurate the estimator. Zero would
be perfect —i.e. there would be no bias in the estimator. As we diverge
from zero, so we have bias. The farther away from zero we are the
more bias we have. Other things being equal, we want an estimator
with small bias. As can be seen from Figure 6.7, regardless of the
correlation between costs over time from zero to one, the two-stage
estimators seem to have lower bias than the weighted estimators.
Although the bias is relatively small for all methods (less than 1% in
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Figure 6.7 Simulation study results: comparing the weighted and
two-stage estimators
Absolute value of percent relative bias
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all cases), what is a little troubling is the apparent bias in the
weighted partitioned estimator, especially as it seems to be higher for
greater correlation.

As important as it is to have an estimator with low bias, it is also very
important to have an estimator with low variance. Low variance is
another criterion for judging the worth of an estimator. We desire an
estimator that is not only very close to the true value of the parameter
(in this case the mean) on average, but also has small variance or
smaller variance than other possible estimators. An estimator that has
relatively small variance is considered to be more efficient than other
estimators and has greater power to detect differences in means.
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Figure 6.8 Simulation study results: comparing the weighted and
two-stage estimators
Percent relative efficiency (PRE) to weighted estimator
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The simple weighted estimator was the least efficient of the four
estimators: it had the greatest variance. Figure 6.8 shows the relative
efficiency in percentage terms of the other estimators relative to the
simple weighted estimator. In Figure 6.7, smaller values were better
but in Figure 6.8 larger values are better. What we see is that the
simple weighted estimator performs the worst, the two-stage
estimator does much better, and the estimators which utilise the cost
history — the weighted partitioned and the two-stage AS — perform
better than the standard two-stage estimator.

Hence, where the cost history is not available, the simulation study
suggests that the two-stage estimator performs better than the simple
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weighted estimator. Where information on cost is available over time
it is preferable to employ either the weighted partitioned estimator or
the two-stage AS estimator since these are more efficient. Although
not shown in the figures, it is worth noting that the Lin estimator
based on cost histories gives results comparable to those of the
weighted partitioned estimator.

To summarise, the weighted and conditional methods are valid
techniques for mean total cost estimation under administrative
censoring. The simple weighted estimator and the two-stage estimator
can be used when information is available only for total cost.
Simulation results indicate that the two-stage estimator is more
efficient that the simple weighted estimator, i.e. it has lower variance.
If information is available on cost history, the forms of the estimators
which utilise the cost histories generally perform better than those
which do not. Intuitively this finding makes sense; because these
methods utilise more useful information they should perform better.
The simulation results suggest that the two-stage AS estimator is less
biased than the partitioned weighted estimator especially when costs
are highly correlated over time but more work is required to
understand why this is the case.

Smoothing procedures such as local regression are very useful for
visualisation and estimation when dealing with censored cost data
problems. Smoothing procedures may be employed more often in
this area since they provide us with an effective way to gain efficiency,
and to estimate and visualise relationships without making strong
parametric assumptions.
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Estimating cost-effectiveness in
multinational clinical trials

HENRY GLICK AND JOHN COOK3

When working with data from randomised trials and making policy
decisions, there are many sources of uncertainty. Two of the most
important sources of uncertainty surrounding the interpretation of
the overall results of multinational or multi-centre trials are whether
they apply to the countries and the centres that (i) participated in the
trial; and (ii) did not participate in the trial. The focus of this paper
is the first of these issues: whether the overall results of a
multinational/centre study can be generalised to all the participating
countries and centres in the study.

The generalisability issue addressed in this paper applies equally to
generalisation from individual countries in multinational trials or
from individual centres in multi-centre trials conducted in a single
country, and to more complicated situations with centres embedded
within countries. For example, in a multinational and multi-centred
trial, a participating centre might be interested not only in whether
the overall results apply in its particular country, but also whether they
apply to itself. To simplify the explanation, this paper will discuss the
applicability of multinational studies to participating countries, but in
most if not all cases one could substitute the term centre for country
and multi-centre for multinational.

There has been a growing concern that the pooled (or average)
clinical and economic results for multinational trials may not be
reflective of the results that would be observed in individual countries
that participated in the trial. Some of the reasons why people are
concerned about generalisability are that we might see differing
morbidity and mortality patterns in different countries, different

3 The authors gratefully acknowledges the assistance of Joe Heyse, Merck
Research Laboratories, and Mike Drummond, University of York Centre for
Health Economics.
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practice patterns, different unit costs etc. In the face of all these types
of variability that may affect the applicability of the pooled or average
result to the participating countries, it may be difficult for decision
makers in specific countries to draw conclusions about the value of
the cost of the therapies that we are evaluating in the trials. This
difficulty falls under the more general issue of generalisability, i.e. the
applicability of the results of a given clinical trial to other populations
or to sub-populations. In this paper, we propose statistical models to
evaluate the homogeneity of the economic results among different
countries (see Cook et.al., 2003).

Traditional approaches to generalising the economic results from
multinational trials to individual countries include: (i) comparison of
trial-wide clinical results with costs based on trial wide resource use
together with unit costs from the country in question; and (ii)
comparison of trial-wide clinical results with costs based just on the
patients treated in that country. The problem with these approaches is
that they ignore the fact that clinical outcomes and economic
outcomes may influence one another. That is, differences in costs may
affect practice patterns, which in turn may affect outcomes; and
differences in practice patterns may affect outcomes, which in turn
may affect costs. One of the alternatives to these two traditional
approaches has been to use decision analytic models (see Drummond
etal, 1992).

The impact of these different approaches can be seen in Table 7.1,
taken from Willke et al. 1998, which shows data from a multinational
study of tirilazad mesylate for subarachnoid haemorrhage in terms of
cost per death averted. The results in the first column were obtained
by multiplying each country’s unit costs by the pooled resources use
to estimate a cost-effectiveness ratio. Those in the second column
were derived by use of the second approach outlined above. The
treatment effect is taken from the trial as a whole but cost comes from
the country-specific resource use and unit cost estimates. Some of the
latter results differ substantially from those derived by use of country
specific unit costs only. In country 5, we both save money and
increase health giving a case of dominance; and in country 1 the cost
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Table 7.1 Impact of unit costs versus other variation
Tirilazad Mesylate for subarachnoid haemorrhage, cost per
death averted (subanalysis using data from five countries)

Country Trial- wide effects Country-specific
Country-specific Country-specific costs and effects
unit costs costs []

1 46,818 5,921 11,450

2 57,636 91,906 60,358

S 53,891 90,487 244,133

4 69,145 93,326 181,259

B 65,800 ok ft

Overall 45,892 45,892 45,892

Notes: [0 Country-specific resource use x Country-specific unit costs.
*#% New therapy dominates.
Source: ~ Willke et al. 1998

is very low leading to a low incremental cost-effectiveness ratio. In the
remaining three countries the ratio is substantially higher. So by using
both the countries’ own costs and own resource use we have
effectively bifurcated the results into the two fairly good value
countries and the three countries where it may not be quite as
good value.

Notice what happens when we use country-specific effects as well as
country-specific costs, in the third column of Table 7.1. Now we
begin to see dramatic differences in the cost-effectiveness results
between countries. Of course, there are no indications of standard
errors in Table 7.1 and therefore it is not possible to judge whether
these observed differences are statistically significant. However, when
we recognise that countries can have different numerators and
different denominators, we have a more complete understanding of
the potential sources of heterogeneity or difference in the economic
outcomes associated with a new therapy.

More recently, another approach that some people have thought
might be appropriate for generalizing economic results is to test the
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homogeneity of the cost and effect components of the cost-
effectiveness ratio. That is, to test whether the treatment effect is the
same across all the countries in the trial and test whether the cost
difference is the same across all the countries. If we can convince
ourselves that both the clinical effect and cost difference are
homogeneous, then we might be tempted to assume that the cost
effectiveness ratio is homogeneous.

The problem with the latter assumption is that a finding of
homogeneity of a therapy’s independent impacts on costs and
outcomes need not guarantee the homogeneity of the resulting cost-
effectiveness ratio. Statistical tests of clinical endpoints of trials are
often based on relative measures such as odds ratios, hazards ratios or
relative risks and most of our homogeneity tests for clinical endpoints
are based on these relative measures. Economic outcomes, on the
other hand, are a result of absolute differences, and cost-effectiveness
ratios are computed as the ratio of absolute differences in cost and
outcomes. Heterogeneity in absolute treatment effects measured as a
difference can occur when there are large country-to-country
differences in the underlying rate of events, coupled with
homogeneity in the relevant treatment effects (i.e., a constant
multiplicative treatment effect).

Table 7.2 Tllustrative example

Country Peontrol Odds ratio Poctive J Difference

Homogeneous odds ratios

1 0.2 0.5 0.111 0.099
2 0.1 0.5 0.053 0.047
Heterogeneous odds ratios

1 0.2 0.72 0.153 0.047
2 0.1 0.5 0.053 0.047
P active = probability of death among those receiving active intervention.
Peontrol = probability of death among those not receiving active intervention.

Difference = Peontro = Pactive
DPactive = (Pcontro\ X OR)/{(Pcuntrol X OR)*(]_ Pcontrol)}

where OR = odds ratio
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A very simple, illustrative example is presented in Table 7.2. Suppose
that the probability of death in the placebo group is 20% in country
1 and 10% in country 2, that is the health system in the first country
does not do a very good job of treating the illness, while the health
system in the second country does a much better job. In one case we
assume that the odds ratio for death associated with active
intervention is 0.5 and has been found to be homogeneous between
the two countries. In an alternative case we assume that the odds
ratios differ — in country 1 itis 0.72 and in country 2 itis 0.5 —and
that this evidence of heterogeneity is statistically significant. The
question is: in which case will the absolute difference in country-
specific outcome be similar?

In the first case of homogenous odds ratios:

® in country 1 the control group had a 20% mortality and
combined with an odds ratio for treatment of 0.5 gives a
probability of death of 0.11 for the active treatment group;

® in country 2 with the baseline mortality of 10% the same odds
ratios gives a probability of death of 0.047.

Despite homogeneity in the odds ratios between countries, many
more deaths are averted in country one than in country two. This
could clearly generate heterogeneity in the cost-effectiveness analysis
by country.

In the second case, despite heterogeneous odds ratios the deaths
averted are the same at 0.047 in both countries. In other words, the
denominator of the cost-effectiveness ratios is going to be the same
in both countries, yet statistically we had concluded that the treatment
effect was heterogeneous. The main point of this example is that it is
not clear that it would be a good strategy to test separately the
homogeneity of the clinical effect and the cost difference in order to
make judgments about the likely homogeneity of the cost-
effectiveness ratio itself.

The complexities related to assessing the homogeneity of country-
specific cost-effectiveness via independent assessment of the
homogeneity of the clinical effect and cost differences suggests an
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alternative approach. Estimate country-specific cost-effectiveness
ratios or net health benefits and evaluate their homogeneity directly.
The more precise pooled estimate of cost-effectiveness (the ratio or
net benefit) for the overall study would be used to represent the
participating countries’ results if: (i) it appears that there is no
country by ratio (country by net benefits) interaction; and (ii) the
minimum detectable difference was small enough to be economically
important. In the example below, the focus of the analysis is on the
homogeneity of net monetary benefits, since these have more
desirable statistical properties than cost-effectiveness ratios. However,
there are similar statistical techniques for ratios as well, so it is
possible to do an equivalent analysis based just on the cost-
effectiveness ratios

Gail and Simon (1985) have proposed two tests of homogeneity
to determine whether the results of a study are inconsistent in
both direction and magnitude or whether they are consistent in
direction but not in magnitude. They defined a qualitative or
cross-over interaction as one where the treatment effect is positive
(i.e. cost-effective) in some countries and negative (i.e. not cost-
effective) in others. That is, the cost-effectiveness between countries
is inconsistent in both direction and magnitude. They defined a non-
cross-over interaction as one where there is variation in the
magnitude of the effect (i.e. cost-effectiveness) but not in its direction
(e.g. when the treatment effect suggests an acceptable cost-
effectiveness ratio in all countries). Peto (1982) has termed the latter
a quantitative interaction.

A finding of qualitative interaction suggests the following
relationships for the clinical outcome, for the costs and for the
economic outcome:

o for the clinical outcome, the treatment is effective in some
countries and ineffective in others;

e for the cost outcome, the treatment saves money in some countries
and adds costs in others;

e for the cost-effectiveness results, the treatment has acceptable
ratios in some countries and unacceptably high ratios in others; or
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in net benefit terms, positive net benefits in some countries and
negative in others.

A finding of a quantitative interaction suggests:

o for the clinical outcome, the treatment is shown to be
effective/ineffective in all countries, but differs in its degree of
effectiveness/ineffectiveness;

® for costs, the treatment saves/costs money in all countries but
differs in the degree of savings/costs;

® for cost-effectiveness, the ratio is acceptable/unacceptable (or the
net health benefits are greater/less than zero) in all countries,
but differs in its degree of acceptability.

In terms of estimation, the formal test for a qualitative treatment by
country interaction of effects uses estimates of the treatment effect
(net monetary benefit) and its variance for each of the countries
being evaluated. The statistical test is based on a likelihood ratio, with
critical values given in Gail and Simon (1985), and there is also a
power test that has been described for qualitative interaction (Pan and
Wolfe, 1997).

The test for quantitative interaction is based on the sum of squared
errors on the country-specific treatment effects and the variance of
those effects. For cost-effectiveness analysis, country-specific net
monetary benefits and variance estimates are used to compute the test
statistic. We use a weighted mean in estimating the errors rather than
the arithmetic mean and the test statistic is compared to critical values
of the Chi-squared distribution with one less degree for freedom than
there are countries being evaluated.

An Example: The Scandinavian Simvastatin Survival Study (‘4S’) was a
randomised double blind placebo controlled study of 4,444 patients
that was conducted in five Scandinavian countries (see Scandinavian
Simvastatin Survival Study Group, 1994). There was a wide range in
terms of the sample sizes that were recruited to the study across these
countries: in Iceland there were just 150 individuals, Denmark had
713, Finland 868, Norway had 1,025, and Sweden had 1,681. So
there was quite a disparity in terms of the amount of information

91



ESTIMATING COST-EFFECTIVENESS IN MULTINATIONAL CLINICAL TRIALS

available in one country versus another. In this study patients were
followed for a median of 5.4 years, but all patients were followed for
five years, unless they had died. Hence the cost-effectiveness results in
this example are based on five-year costs and five-year survival
probabilities.

Figure 7.1, taken from Cook et.al.,2003, gives a sense of the basic
results within each country. The y-axis shows the incremental cost for
simvastatin relative to placebo ranging from zero up to $2,500 per
patient. The x-axis shows the incremental survival probability ranging
from zero up to 5%. The overall effect is marked with an asterisk and
shows a gain in survival probability of 3.3% at an additional cost of
just over $2,000 per individual. There is variation around these
estimates as you look across the countries. Incremental survival is
lowest in Iceland and highest in Denmark and Norway. Incremental
cost is also lowest in Iceland and is greatest in Finland.

Figure 7.1 48S:incremental costs and effectiveness
(simvastatin — placebo)
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What we want to determine is whether or not there is qualitative or
quantitative interaction here with respect to the cost-effectiveness of
simvastatin in the individual countries. We could consider this
question either in terms of cost-effectiveness ratios (represented by
the slopes of the lines joining each point to the origin in Figure 7.1)
or in terms of net benefits (essentially the minimum distances
between the data points and a reference line representing the ceiling
ratio that decision makers are willing to pay). Note that one needs to
identify a threshold or ceiling ratio to judge whether an intervention
is cost-effective or not cost-effective, whether cost-effectiveness ratios
or net benefits are used.

If, for example, one compared the point estimates for the five
countries to a ceiling ratio of $75,000 per additional survivor, one
might conclude that in Iceland and Finland the product is not cost-
effective, whereas in Sweden, Norway and Denmark, it is.% Such a
comparison is problematic because it does not take into account the
variability that exists within the estimates. If we use that ceiling
threshold of $75,000 per additional survivor, we can estimate the net
monetary benefit for each patient within this study by taking the
$75,000 and multiplying it by one if they survived and zero if they
did not and then subtracting out the cost of treating the individual.
We can then take the average net benefit across individuals within a
country for the two treatments, simvastatin and placebo, and see the
difference between countries. Results of this calculation are presented
in Table 7.3.

The results show that in Finland and Iceland we have negative
estimates for the incremental net monetary benefit of treatment,
whereas it is positive in Norway, Denmark and Sweden. The variability

4 Given that the ceiling ratio is not well known in any country and is likely to differ
between countries, then in practice it is desirable to test whether the results were
homogeneous across a range of different ceiling ratio values. For example, in
addition to testing with a value of $75,000 per survivor, the test could be repeated
for a ceiling ratio of $50,000 per survivor, and for other values. However, do not use
separate ceiling ratios in different countries in the calculation of a pooled result; use
a common ceiling ratios across countries, but test at different levels of that ratio.
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Table 7.3 4S: net benefits ($): assessment of interaction

Net benefit
Country Mean S.E.
Denmark 1,208.8 1,964.7
Finland -850.2 1,306.2
Iceland -636.5 3,404.0
Norway 1,370.9 1,486.8
Sweden 542.3 1,105.7

Assuming A = $75,000 per survivor.

in Iceland is much larger than in the other countries, which reflects
the small sample size. So the question is whether or not these
apparent differences between countries are meaningful once the
reduced sample size (and therefore increased variance) is taken into
account. Applying the Gail and Simon test for quantitative interaction
would suggest that the differences are not significant; in other words
it is unlikely that the variability in the results of Table 7.3 reflects real
differences among the different countries. Typically in these types of
tests, because of the low power, we do not use a stringent test such as
an alpha of 0.05 to judge whether or not interaction exists, rather we
relax the test to an alpha of 0.2. Alternatively, Piantadosi and Gail
(1993) have proposed another method for testing for homogeneity,
based upon using confidence intervals, and this is the method that
Pan and Wolfe (1997) used in order to assess the issues of power that
are addressed below. So there is not one single way of going about
assessing qualitative or quantitative interaction — the Gail and Simon
test is just one approach that can be used.

Although the Gail and Simon method suggested that there was no
interaction in our 4S example, the question is whether or not we are
confident in those results in the light of the low power of the test.
Another question has to do with the source of the lack of power: is it
because there is so much variation in the cost from one country to the
next, that we would have needed very large sample sizes in order to
pick up differences between countries? In order to address these
issues an ex-post power calculation was undertaken. It provides a
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sense of whether there was a chance of seeing any differences among
the countries given the sample sizes that were available and given the
amount of variation that was seen. Of course, the power also depends
on the magnitude of differences to be detected — in a prospective
assessment of power one would need to be able to quantify what is
really an important difference in order to see whether or not you had
enough power to pick up that difference.

Recall the pattern of the 4S results was that two countries, Iceland and
Finland, had negative net benefits and that the other three countries
had positive net benefits. Had we used these observed results as if they
represented the true net benefit differences among the countries that
we were trying to detect, then with an alpha of 0.05, we would have
had no chance of identifying these differences as significant or
concluding that there was qualitative interaction among those
countries. But if we relax the alpha value to 0.2, indicating that we are
more willing to come up with a wrong conclusion, then our power
would increase to 12%.

Why is the power in this particular study so low? It could be due to
sample size or to variability. With a sample of 4,444 individuals from
five countries, the sample size does not seem particularly low, apart
from in Iceland which clearly did have fewer patients (150) recruited.
However, even if we exclude Iceland there is little increase in power.
In fact it is in the variability of net benefits where it is most likely that
the loss in power is occurring in this particular case.

The variability of net benefits comes from two components: the cost
and the effect. Typically we might consider the cost component to be
more variable, however in this case it is the differences in effects that
contributes most to the variability in net benefit. Recall that the
change in survival probabilities is multiplied by $75,000, so that
survival probability is going to be very influential in terms of the
variability of net heath benefits. If you evaluate the ratio of the
standard errors of the health outcome effect side and costs in the five
countries, it turns out that it is imprecision in terms of the estimate
of survival probability that is leading to the large variability in the net
health benefits. If the amount of variability in survival was equivalent
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to that of cost then the power of the test would be around 70%, and
most people would be quite happy with power of that size. So here is
an example where one needs a larger sample size, not to estimate cost,
but because the variability on the clinical outcome is contributing
most to the variability of the cost-effectiveness statistic of interest.

In this chapter we have outlined a method for evaluating the
homogeneity of country-specific cost-effectiveness ratios or net
monetary benefits calculated in multinational trials, to determine
whether the pooled result is representative for all countries or
whether it is more appropriate to report separate ratios for each
country. In addition to a general test of interaction, we have proposed
determining if the treatment effects are inconsistent in both direction
and magnitude or if they are consistent in direction but not in
magnitude. This set of tests is a reformulation of the Gail and Simons
test for the evaluation of homogeneity of clinical outcomes to make
it applicable to the homogeneity of economic results.

A finding of homogeneity is a necessary but not a sufficient condition
for attributing the pooled results of the trial to all of the countries that
participated in the trial. Given potential limitations in the power of a
test of homogeneity, failure to detect heterogeneity does not mean the
results are homogenous. Ex post power calculations provide
additional information about the degree of homogeneity that may
exist when heterogeneity is not detected. For example, if it turns out
that there could have been $10,000 difference in net health benefits
between the countries and we would still have concluded that they
were homogenous, then the decision maker will not have learned
much from our evaluation of homogeneity.

When there is evidence of heterogeneity, one should explore the
possible reasons for it and determine whether it is qualitative or
quantitative in nature. Use of pooled estimates to represent the cost-
effectiveness ratio for all countries is less problematic in the presence
of quantitative interaction, where all results are acceptable but of
different magnitudes or they are all unacceptable but of different
magnitudes, since the direction of the effect (cost-effectiveness
acceptability) is the same in all countries. Thus if all decision
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makers use the same ceiling ratio, conclusions would not change
for individual countries between using country-specific or
pooled results.

In the face of qualitative interaction, pooled estimates should not be
used. If you were to find qualitative interactions you need instead to
investigate why the therapy is cost-effective in some countries and not
in others.

Although the focus of this paper has been on generalisability across
countries in multinational studies, the same techniques can be
employed to assess homogeneity across practice patterns or across
levels of illness or other sub-groups such as men and women. So we
can use the evidence of heterogeneity to determine whether the
pooled results of cost-effectiveness studies are applicable across
countries, practice patterns, levels of illness severity etc.. We also may
desire to know about cost-effectiveness in settings or populations that
are unlike anything that is observed in the trial. But unless the trial has
observed at least something like these settings it will not provide us
with information to do that.

One common reaction to this problem is to say “the trial is not really
representative so we should use a decision analysis approach”. The
problem with this approach, however, is that if we do not have any
evidence of whether what was observed in the trial applies to one
country versus another, where does the evidence for use in a decision
model come from? If we did not have enough evidence in these trials
to distinguish between the costs in different countries and effects in
different countries, where is the modeller going to come up with the
data to support the decision analytic model of whether the costs and
effects are different between countries? So if it turns out, as is
particularly likely with new medicines or other treatments that have
not been used before, that the trial evidence is all the evidence we
have, it is not clear that a decision analytic model provides us with
a solution.

In conclusion, the growing policy demand for health technology
assessment often requires that limited clinical and economic data be
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applied to a variety of different populations. Tests used to assess
country by treatment interactions for clinical endpoints can be
adapted to assess the presence of an interaction in economic
outcomes including net health benefits and the cost-effectiveness
ratio. The use of the Gail and Simon test for qualitative and
quantitative interaction can be useful in determining if and how
country-specific results can be pooled to obtain trial-wide estimates
of economic impact. Tests of homogeneity should partially offset
difficulties decision makers in specific countries have in drawing
useful conclusions from multinational trials about the value of a
therapy in their own specific country.

In future it will be important to consider design issues such as sample
size per country when economic assessments are planned in
multinational clinical trials. In our 4S example there were five
countries and some of those countries had more than 1,000 patients
entered in the trial. However, it is common for multinational studies
to be conducted in 50 countries and maybe some of those countries
contribute only 20 patients. You are not going to be able to use the
estimates by country in those trials to assess generalisability. It may
make sense in such situations to group particular countries — say
Western European countries, developing countries, North America —
and test the homogeneity across those categories to see if the trial-
wide result appears homogeneous. But if we want to test it by country
we are going to have to change the way we design some multinational
clinical trials and pay more attention to the number of patients
recruited in each country.
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