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Foreword 

The use of models in economic studies evaluating 
medicines and other health technologies has become 
a controversial issue. This is because study results 
now matter - decision makers are increasingly acting 
on information about the cost effectiveness of 
treatments. 

This publication is intended to introduce the key 
elements of modelling and to explain, with examples, 
the role that good modelling should play in an 
economic evaluation. It discusses some of the 
controversies around the use of models but is not 
intended to be a guide to this debate. Its purpose is 
to equip the reader with an understanding of the 
basic concepts of, and the main uses of, modelling in 
economic evaluation. 

The author, Brian Rittenhouse, argues that we use the 
term 'model' in two quite different ways. In the first 
sense we take a model to be any artificial 
simplification of reality designed to enable us to 
better understand the world. A road map would fall 
into this category, as would a randomised controlled 
trial. It is the second meaning of the term model that 
is more controversial - where the simplification of 
reality includes the use of techniques to combine data 
from different sources, and, usually, the use of 
assumptions to enable extrapolation from the 
combined data or to fill gaps within the required data 
set. 

After categorising types of model and introducing us 
to decision analysis, he then addresses the need to 
have information on effectiveness rather than 
efficacy. Most randomised controlled trials are 
designed to demonstrate efficacy, whereas decision 
makers need to know about effectiveness in clinical 
practice. This is particularly the case for 
pharmaceuticals, where pre launch trials are 
designed to meet regulatory requirements for safety 
and efficacy evidence, leading to study designs with 
high internal validity, but, often, limited external 
validity. Some of the deficiencies of these trials can, in 
principle, be dealt with by changes in trial design, 
others cannot. Modelling can provide a way of 
turning good efficacy and cost-efficacy studies into 
good cost-effectiveness analyses. 

Of course, concerns about potential bias in data taken 
from non RCT based studies (see Sheldon (1994)) do 
have to be addressed, and Rittenhouse discusses 
sources of bias, hierarchies of evidence, and the 
extent to which sensitivity analysis and other ways of 

handling uncertainty can help decision makers 
understand the potential variation in outcome. He 
concludes that while sensitivity analysis is valuable it 
is no substitute for addressing concerns about bias 
prior to producing the central result of the study. 

As Rittenhouse acknowledges, modelling is not 
without its drawbacks. Readers who wish to follow 
on from this publication to read more about some of 
the controversies surrounding the use of modelling, 
will find a well argued case for the appropriate use of 
modelling in Luce (1995) and in Gold et al (1996). A 
thoughtful review of the issues is set out in Buxton et 
al (forthcoming), and a note of scepticism, restating 
the case for society to invest on the collection of good 
evidence from randomised controlled trials, is 
contained in Sheldon (1996). 

Rittenhouse is clear that modelling is a valuable, 
integral, and permanent feature of economic 
evaluations and can be of good quality. I hope you 
find his introduction to the concepts and role of 
modelling of interest, and that it will stimulate you to 
read more about modelling techniques and about the 
debates surrounding its role in economic evaluations 
and in decision making. 

Adrian Towse 
Director of the Office of Health Economics 
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The word 'model ' has many meanings to many 
people. Even within the policy analytic literature we 
will see that there are several meanings and types of 
models. For economic evaluation of medicines in 
particular modelling is currently in vogue. Why is 
this the case? What does the term mean? Why do we 
need models? Will we always need them? This 
monograph will provide one set of answers to these 
and other related questions. 

There are at least two broad meanings of the term 
model that are used in this context. The first is very 
general. A model can be merely a simplified version 
of reality that is used to describe the essential 
elements of a real situation such as the economic 
implications of using a particular therapy. The point 
of such a model is to describe enough of the essential 
elements of reality to enable cost effective decision 
making. A more mundane example of this type of a 
model is a road map. It provides a simplified version 
of reality that describes essential elements to drivers. 
In this sense any economic evaluation will always 
use a model. Even a randomized controlled trial 
(RCT) is a model - measuring only particular aspects 
of a patient's experience with treatment. Such models 
will always be part of economic evaluations. 

The second and more interesting meaning of the 
word model has to do with the type of data used in a 
model of the first type. We may model the outcome 
of an intervention in the sense that we do not 
measure it directly. Thus we may measure a given 
level of blood pressure reduction, but will be 
interested in aspects not measured, such as what 
resources they consumed, and what were the health 
or health-related quality of life implications? Many of 
these variables will not conventionally be measured 
because of cost a n d / o r time concerns. However, for 
purposes of a complete economic analysis, some 
concept of final outcome and cost is essential. If these 
variables are not measured, they must be modelled. 
This can mean many things along a continuum of 
evidence from casual conjecture to rigorously precise 
epidemiological studies to extrapolate (model) from a 
clinical endpoint to a final outcome, such as years of 
life saved. 

Traditionally, models have been used in economic 
evaluations often to compensate for lack of foresight 
(or interest) on the part of clinical investigators in 
pursuing economic goals. This is changing 
somewhat. As RCTs include more and more variables 

of interest to economists, it may appear that 
modelling, in the second sense of the usage here, may 
become needless. However, certain aspects of RCTs 
imply that this will not be the case. RCTs, even when 
they are designed to collect economic data, fall short 
of representing the reality of health outcomes and 
resource utilization to be expected in routine clinical 
practice in the same indication area. Models can be 
built to correct these problems. This paper will argue 
that this economic 'modelling', in the second sense of 
our meaning is currently, and will in the future, 
remain essential to the practice of the economic 
evaluation of medicines. That is, far from being a 
temporary fix for the lack of adequate planning for 
economic evaluations that it is often thought to be, 
modelling is a essential component of any accurate 
economic analysis. 



2. W h y are we interested in the economics of 
medical interventions? 

'The health care industry is a $900+ billion 
endeavour that does not know how to 
measure its main product: health' 
- D FRYBACK (1993) 

The tremendous growth over the past century of the 
ability to influence disease prognosis has led to a 
revolution in thinking about medical resource 
allocation. In years past physicians were limited in 
the armamentarium at their disposal to fight disease. 
Their ability to intervene to any significant effect was 
restricted. This is (emphatically) no longer the case 
for many diseases. While cure is still often elusive, 
many things can be done for patients to increase the 
probability of successful prevention, diagnosis or 
cure. Old decision criteria must be reassessed in such 
a situation where medical care can now consume as 
much of society's resources as it chooses to devote to 
the task. There is no limit (other than financial) to the 
ability to spend to improve outcomes. 

The traditional approach that dictated the allocation 
of medical resources (at least in spirit) was based on 
medical principle. Some have called this the 'rule of 
rescue' (Dworkin, 1994). The implications of this 
approach were that if something was likely to have a 
positive influence on outcome, even with low 
probability, then it was done. In an era where 
opportunities to intervene were practically limited by 
technology and knowledge, this provided relatively 
few financial difficulties. Now however, such a 
philosophy implies quite a different picture. Without 
any conceptual limit on ability to spend to positively 
influence health outcomes, how are individuals or 
society to make choices in the allocation of resources? 

One approach is to evaluate health technologies in 
terms of their economic efficiency - their productivity 
in achieving health. This approach dictates that one 
should consider both the costs and consequences of 
alternative activities in allocating resources and 
choosing among them. What are the 
consequences/benefits of particular actions? What 
does it cost to bring about these particular 
consequences? Perhaps most often overlooked is the 
important concept of the value of the additional 
consequences brought about. The consequences 
themselves are only part of the story. Ultimately 
economics is interested in the value of consequences 
compared to the costs of achieving them. Setting 
priorities to squeeze more value out of a given set of 

resources essentially means achieving more health for 
the same budget. 

How do economists (or others using the philosophy 
of economics) produce evidence on outcomes and 
costs of achieving them to guide economic decisions 
of individuals or policy makers? How do they 
measure outcomes and the relative value of those 
outcomes to inform decision makers so that priorities 
can be set to bring about the highest level of 
population health with a given set of resources? In a 
general sense, they build economic models in both 
our meanings of the term. Here we will describe 
some of the concepts used in such models. 



3. W h a t is a model? 

'Don't ask what it means, but rather how it 
is used.' 
- L. W I T T G E N S T E I N (Freedman et al, 1991, p. 475) 

3.1 A simplified version of reality 

As we noted the term model has two main meanings. 
In the first, more general meaning, a model is a 
simplified rendering of the real world used to capture 
the essence of reality while dispensing with much of 
the complicated excess baggage that accompanies 
reality, but makes analysis difficult. A model is 
intended to assist in decision making. As such, it 
should simplify the relevant issues to their minimal 
level of complexity (but no further!), retaining the 
essential components in order to remain useful as a 
tool for assisting in decision making. There can be an 
art to the simplification process that is essential to 
model development. Oversimplifying reality in the 
interest of making a problem more easily solved leads 
to inaccuracy. l/Hdersimplifying reality can lead to 
confusion or an inability to resolve the problem. 

When results from an RCT are used for decision 
making, at least implicitly, decision makers have a 
model at work. In assessing relative performance 
over placebo or active control arm in a 
pharmaceutical trial, particular efficacy and safety 
endpoints are chosen and others are either given 
lower priority or are ignored. This is a simplification 
of reality necessary to enable decisions to be made in 
a timely, organized and cost-effective manner. Of 
course these simplifying assumptions can be wrong. 
Brody (1995) reports that in the early results of the 
TIMI-1 trial of tPA v. streptokinase in thrombolytic 
therapy, patency of the infarct-related artery at 90 
minutes after treatment was used as an intermediate 
endpoint, indicating marked superiority for tPA (see 
discussion of a model of these results in Appendix II, 
Box 7). Later results, using mortality data, indicated 
much more marginal superiority (The GUSTO 
Investigators, 1993). Re-analysis of the data from a 
Bayesian statistical perspective indicated that even 
those marginal (yet potentially important) differences 
were probably illusory (Brophy and Joseph, 1995). 

An economic model uses simplification - the 

essential details are included, others are ignored or 

given lesser weight. What outcomes or costs receive 

primary attention will depend on the specific context 
of the evaluation. A model might leave out low 
probability and low risk events that might marginally 
influence outcomes. By definition these events are 
unlikely to have a major impact. Using them in the 
model will merely complicate the analysis without 
providing any corresponding benefit in terms of 
enhanced accuracy. 

In an introductory text on policy analysis, Stokey and 
Zeckhauser (1978) describe several generic types of 
model, listed in Table 1. Descriptive models attempt 
to present a framework for prediction of what the 
results of some process will be (e.g. if one goes to the 
doctor, one will recover from an illness; if one studies 
effectively, one will learn). Prescriptive models on the 
other hand purport to indicate an optimal course of 
action rather than simply describe and predict action. 
Such models provide counsel (e.g. if one is ill, one 
should go to see a physician). Imbedded in a 
prescriptive model is always a descriptive model (e.g. 
one sees a physician because one is expected to 
recover more easily/rapidly because of such actions). 
Before one can make a prescriptive recommendation, 
one must know the consequences of alternative 
choices. Such consequences form the descriptive 
model within the context of the prescriptive model. 

Table 1 General types of models 

Descriptive: D e s c r i b e w h a t wil l happen 

Prescriptive: Suggest opt imal c o u r s e of act ion 

Deterministic: Events happen wi th certa inty 

Stochastic: Events happen wi th specif ied probabil it ies 

Source: Stokey and Zeckhauser, I 978 

One must also have an objective in order to use a 
prescriptive model. In the above example, the 
objective may be to recover from illness. Some 
objectives are more clearlv appropriate than others. 
This is particularly the case when other constraints 
enter the picture, such as the costs of doing trials. 
Primary endpoints are chosen for sample size, time 
and cost reasons sometimes. Often such endpoints are 
intermediate in nature (e.g. blood pressure reduction). 
Ultimately the objective is not the achievement of 
these intermediate endpoints, but some more valuable 
final outcome. Whether the final outcome is 
sufficiently associated with these measured 
intermediate endpoints is sometimes questionable. 

Even were the link a strong one, there may still 

remain conflicts over what the appropriate final 



o u t c o m e is. In chronic disease management , the 

probabilistic effect on health outcome must be 

weighted against the possibil i ty of reduced quality of 

life due to side effects of long term drug therapy. In a 

cancer patient, recovery m a y not be the sole concern. 

Qual i ty of life m a y be an addit ional important factor. 

Possibly confl ict ing objectives require a choice or a 

way (another model ) of combining objectives (e.g. 

qual i ty and length of life). Here one m a y see the 

potential conflict between chosen assumpt ions in a 

prescriptive model . S impli fying reality must occur in 

any model . The quest ion is whether reality has been 

oversimplif ied or if the process of s implif ication is 

legit imate (we will see later a debate on this in the 

context of quality and length of life and whether 

part icular concepts in efforts to combine length and 

quali ty of life are legitimate). 

F igure 1 A determinis t i c , prescr ipt ive m o d e l 

Become ill 

See physician Do not see physician 

I 
Obtain prescription 

I 
Take drugs 

I 
Recover rapidly Slow recovery 

Determinist ic and stochastic models can each be 

e m b e d d e d in either of the above types of models . The 

former makes s tatements with certainty, the latter 

wi th probability. Thus, determinist ic models are 

implicit in the brief descript ions above , whi le 

stochastic models would be represented differently. 

Figure 1 s h o w s a very s imple prescriptive 

determinist ic model to help determine whether one 

should see a physician when one is ill. There are two 

choices with determinist ic outcomes associated with 

each of them. D e p e n d i n g on the perceived relative 

va lue of early and late recovery o n e chooses the 

opt imal course of action. O n e might also associate 

costs with each of the alternative actions and tradeoff 

the added value versus the costs of early recovery 

associated with the physician visit. 

A stochastic prescriptive model might state that if 

one studies, one is likely to learn (perhaps associating 

a probabil i ty with this outcome as well as with its 

c o m p l e m e n t - that one might not learn). Such a 

model might say that if one is ill, one should or 

should not visit a physician, the decis ion being based 

on the interplay of likely consequences if one either 

does or does not make the visit. In Figure 1 w e could 

have incorporated stochastic e lements at various 

points to make the model more realistic. For example , 

we could have m a d e it probabilistic rather than 

deterministic that one would be given drugs by the 

physician or that they are taken properly or that 

recovery is actually achieved. The outcomes of such a 

model are probabilistic only, and one must entertain 

the possibility that one's a priori decision will be 

shown ex post to have been in error. O n e makes 

decisions based on relative probabilities, outcomes and 

the values of the outcomes. Box 1 (page 10) illustrates 

the making of decisions using the mathematical 

concept of 'expected value' , an average outcome that 

is in fact 'expected' only in the sense of its being an 

average if the situation were played out many times. 

Nevertheless, the expected outcomes from various 

possible actions can be quite useful in decision making 

under conditions where there is uncertainty in 

consequences of different actions. These methods are 

often referred to as 'decision analytic' models. 

What are s o m e of the advantages of models? We 

have already ment ioned the great advantage of 

s implifying reality to facilitate prediction or 

prescription. Deal ing only with simplif ied versions of 

reality al low us to examine essential features of 

reality without much of the (hopefully) superf luous 

details so often associated with reality. Thus a m a p is 

a model of real topographical features of a landscape 

or of roads that cover an area. M a p s are 

simplif ications of reality, and depending on the use to 

which they are to be put, they m a y suffice to describe 

reality in ways that are useful wi thout requiring all 

the details of reality. 

Another advantage provided by a model is that it 

serves what Stokey and Zeckhauser (1978) call a 

bookkeeping function. It describes all assumpt ions 

that the model uses and thereby helps an analyst 

organize and keep track of the various c o m p o n e n t s of 

the analysis . This same property has another useful 

attribute. It facilitates a communicat ion function at 

the same time by explicitly detail ing these 

assumpt ions for those to w h o m the model is 



presented. Box 3 on page 17 indicates the organising 
function of models. Decision analytic models in 
particular tend to be quite helpful in indicating the 
organisation and structure of the analysis as their 
structure is laid out diagrammatically. We will see 
several examples of such models in this monograph. 

It is stochastic, prescriptive models that are most 
frequently of use in the economic evaluation of 
medicines, and it is these that will be the focus of all 
the examples provided in this discussion (sometimes 
with descriptive models embedded within them). 
The practice of medicine is uncertain; indeed that fact 
does much to explain why economists and 
epidemiologists and others are spending so much of 
their time on these issues. The inherent uncertainty in 
the field demands careful attention to detail in 
providing models to assist decision makers. 
Furthermore, it is often a course of optimal action 
that we seek to determine, not merely to describe 
what people might choose to do. Thus it is not 
descriptive but prescriptive models that are the goals 
of most of the economic evaluations of 
pharmaceuticals. The very lack of adequate 
information so inherent in the medical field makes 
the reliance on description somewhat unsatisfactory 
and incomplete. We are after answers to what we 
should do, not predicting what people will do -
should a particular drug be used in a certain type of 
patient?; should the price be reimbursed by the 
insurance system (implicitly asking whether there is 
sufficient value obtainable from the product to justify 
the outlay)? 

Figure 2 shows a decision analytic model in the form 
of a 'decision tree' as part of a prescriptive, stochastic 
model. The decision in this case is whether to see a 
physician or not when one becomes ill. Of course, 
such a decision will depend on the specifics of the 
illness, but a general model will serve to indicate the 
process. The model is prescriptive in that it will 
indicate which decision is optimal given the 
objective, in this case to recover from the illness. 
Decisions are represented in trees as squares with the 
possible decisions emanating from the squares, in 
this case there are only two possible decisions - see a 
physician or not. These squares are known as 
decision nodes. Circles denote chance nodes. When a 
circle appears, the outcome is not decided by a 
decision but by chance. At each chance node the 
branches emanating will have probabilities associated 
with them. The probabilities of all the branches at 

Figure 2 A stochastic, prescriptive model 

Rapid recovery 

See physician 

Become 

6 
(p) 

(i - p ) 

o Slow recovery 

Rapid recovery 

Do not see physician o (q) 

( i - q ) 

Slow recovery 

each chance node must sum to equal one; that is they 
must collectively exhaust all possibilities - all 
possibilities must be accounted for. Here one either 
recovers or does not. With two branches to the tree, if 
the probability of rapid recovery is denoted by 'p', 
the probability of slow recovery can be written as '1 -
p'. Since there are two alternative actions, there 
should be two different sets of probabilities. We 
denote the probabilities of recovery from each of 
these actions as p and q. 

One may imagine chance nodes with several other 
possibilities. Each branch coming from a chance node 
must also be mutually exclusive, that is, there is no 
overlap between outcomes at chance nodes. These 
events (recover rapidly or slowly) are mutually 
exclusive and (assumed to be) collectively exhaustive. 
A chance node with only the recover option 
emanating from it would not be exhaustive (unless 
recovery occurred for all persons, in which case it is 
not properly a chance event, though sometimes for 
clarity of depiction certainties are presented with 
probabilities of one); a chance node with recover as 
one branch and experience an adverse event at 
another and not recover at a third would contain the 
possibility of overlap. One could recover with an 
adverse reaction for example. In this example, it is 
assumed that all patients will recover. If that is not the 
case the model would need to be modified. 

If we are interested in maximizing the chance of 
rapid recovery in this example, we will choose the 
option with the highest probability of that outcome. 
This model can be expanded to include a choice of 



Box 1 Decision making based on expected values of outcomes 

In Figure 3 below, we represent a simple choice 

between treatments, new and old. The problem is 

represented as a decision tree. The new treatment has 

evidence supporting a 0.5 probability of producing a 

rapid recovery as compared to the old treatment 

probability of only 0.4. The only other possibility 

entertained in the model is that a slow recovery occurs 

Figure 3 Simple decision tree 

Rapid recovery 

New treatment 
- o 

(•5) 

(•5) 

$50 

0 

Slow recovery 

Rapid recovery 

$50 + $52 = $102 

Old treatment - 6 

(•4) 

(•6) 

$24 

Slow recovery 
$24 + $52 = $76 

which is assumed to be the equivalent of not having 

received treatment. The new drug costs $50; the old 

only $24. If either drug does not work, a further $52 is 

spent in palliative care during the slow recovery. The 

model developers are solely interested in minimizing 

the costs of the treatments in this case. That is, they 

care nothing for the possibility of improved outcome 

outside of the possibility that such improved outcome 

reduces costs (it should be clear by now that this is not 

a proper economic analysis since it ignores outcomes 

and their valuation; nonetheless, this type of analysis is 

sometimes used, and it serves to illustrate the basic 

point of expected value decision making). 

Expected costs are the outcome criteria for evaluating 

this model. 'Expected' in this sense is a very special use 

of the word that is somewhat counterintuitive in that, 

at least for any given patient, such costs as are 

'expected' will in fact never occur. 'Expected' costs 

refer to a more global perspective of an average cost if 

many patients were to be treated under each of the two 

alternative actions. Thus it is expected in the sense of a 

population perspective. If we were to choose one 

particular treatment, its expected costs would be 

expected in the conventional sense to be the average of 

the patients exposed to this treatment. 

The expectation is a mathematical operation that is 

simply a weighted average of the outcomes, where the 

weights are the probabilities associated with the 

outcomes. The cost outcomes are written into the 

decision tree above. Anyone receiving the new or old 

drug incurs a cost of $50 and $24 respectively. In 

addition, anyone who does not achieve rapid recovery 

receives the palliative care during the slower recovery 

they do experience. This will add a further $52 to the 

total treatment costs of those individuals. 

The expected cost of the new treatment is the weighted 

average of the two possible cost outcomes weighted by 

their probabilities: 

EC (new) = (0.5) ($50) + (0.5) ($50 + $52) = $25 + $51 

= $76 

Similarly, the expected cost of the old drug is: 

EC (old) = (0.4) ($24) + (0.6) ($24 + $52) = $9.60 + 
$45.60 = $55.20 

The old drug has a lower expected cost and apparently 

should therefore (by our criteria) be the drug of choice. 

However, in addition to ignoring the outcomes of these 

treatment alternatives, the analyst has ignored another 

factor that is more important because it affects the 

optimality of his or her decision, even based on the 

limited considerations of budget that is here assumed 

to be the relevant assessment criterion. Note that, by 

assumption, treatment failure implies slow recovery 

which is the same as the result if no treatment were 

applied at all. The costs associated with slow recovery 

are assumed to be $52. It would be cheaper to not treat 

anyone and pay this cost than to choose the 'cheapest 

treatment' that has an expected cost of $55.20. 

This example indicates the necessity of examining all 

relevant alternatives, a suggestion often ignored 

(through ignorance or through conscious strategy). 

Canada's guidelines for the economic evaluation of 

pharmaceuticals (CCOHTA, 1994) reflect this approach 

stating that the relevant comparison is 'existing 

treatment' (which is carefully defined so that it is not 

just any existing treatment) and 'minimal treatment.' 

In general we will be interested in the outcomes as 

well as the costs, and we would calculate expected 

outcomes in the same manner as we calculated 

expected costs. There is an additional complication that 

is often of interest in the calculation of expected 

outcomes. That is that we are not always simply 

interested in the expected outcome, but in the expected 

valuation of that outcome. These valuations frequently 

rely on the assessment of 'utilities' of outcomes. 

Looselv speaking, these 'utilities' are the level of 

relative satisfaction obtained from various actions. We 

will address this issue further later. 



drugs conditional on seeing the doctor. This choice of 
drugs may be either a descriptive or a prescriptive 
model depending on the purpose it is to serve. If it is 
to help physicians decide what treatment is 
appropriate then the model should be prescriptive. In 
Figure 4, Figure 2 has been modified to include 
alternative treatments with potentially different 
probabilities of achieving outcomes. If a decision is to 
be made as to which treatment is to be used, then 
there should be (as indicated) a square decision node 
at the branch where there is a choice of treatments. 

If the model is designed to help someone to decide 
whether to see a doctor or not, and the drug 
treatment decisions were determined solely by the 
doctor, then the drug choice is 'exogenous' 
(determined outside of the model) to the decision 
and may be represented by a chance node with 
probabilities of each type of drug treatment entered 
into that model if they are known. At a societal level, 
if one knows that some given percentage of 
physicians use a particular treatment then these 

Figure 4 Additional elements to stochastic prescriptive model in Figure 2 

percentages could be converted into probabilities and 
used here. In this case the square node for treatment 
choice would be replaced by a circle chance node. 
Then the model could be used to determine whether 
someone should see a physician based on this set of 
information. Thus the model may be descriptive or 
prescriptive once one has seen the physician (or has 
not) within an overall prescriptive model concerning 
the decision whether to see the physician. 

The discussion of the opportunity to choose within an 
overall prescriptive model whether to imbed another 
prescriptive model or descriptive model brings up 
another option - adding a deterministic element to the 
model at this stage. We could just assume that 'good 
clinical practice' is the mode of care provided. That is, 
optimal treatment (somehow defined) is provided. In 
some cases this could imply that all patients reaching a 
particular point in the model (having a particular 
outcome) will be treated in one way and only in one 
way. This would imply a deterministic aspect at that 
stage, reflecting the good clinical practice assumption. 
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In other cases even adhering to good clinical practice 
may imply a variety of possibilities, the frequencies of 
which may be known (this either reflects physician 
responses to patient attributes not apparent in the 
model or simply other legitimate physician variation 
in treatment patterns). In this case we would have a 
stochastic model where good clinical practice of one 
sort or another is delivered. Any individual physician 
may know how a particular patient in his or her 
practice may be treated, but the analyst would not 
necessarily have this information. The outcomes of 
this level of care are then modelled as stochastic or 
deterministic events depending on what is called for 
by the situation. 

Another possibility can be envisaged. In the last 
example, one supports implicitly the delivery of good 
clinical practice in the model; however, such practice 
may not always be delivered. This is particularly the 
case in general medical practice as opposed to the 
situation in RCTs. We will have more to say on this 
issue below. Recognizing that good clinical practice 
may not in fact be the norm, we can choose to 
represent reality in the model rather than some 
wished-for state of the world. Thus we will have a 
more predictive model of what the implications of 
any decisions are in our world rather than in some 
ideal one, and we can thus better evaluate the 
prescriptive model as a result - based on the 
knowledge of what will be the results of various 
actions contemplated. 

As an example in a model of a pharmaceutical 
treatment, we may use a medicine in place of surgery, 
but if the therapy fails for some reason, surgery may 
be the back up option. Suppose that there are 
guidelines for what type of surgery is performed 
depending for example or patient type. Let us also 
assume that 30 per cent of the surgeries performed 
ignore these guidelines. We now have a choice to 
make in the model. We can assume that good clinical 
practice is followed (ignoring reality) or we can 
adopt more realistic assumptions (ignoring good 
clinical practice). Since the choice of surgery is 
exogeneous to the model (one may imagine that the 
evaluation is being done to decide the cost-
effectiveness of a pharmaceutical), one may easily 
justify the use of descriptive elements regarding 
surgery procedures - after all we want to know the 
predictions of using the drug to decide whether we 
should use it. We need a descriptive model within 
our prescriptive model. 

As another example, if one must take a drug within 
48 hours of symptom onset in order for it to be 
effective, and most patients will not, then we have a 
similar choice to make. We might use a descriptive 
element (actual practice) or we might use good 
clinical practice. It may not be good clinical practice 
to administer the drug more than 48 hours after 
symptoms appear. Costs would be incurred (in terms 
of both drug cost and possible adverse reactions) 
with no benefit for patients. Cost-effectiveness in 
reality might be significantly reduced. If one knows 
that this is in fact the actual practice pattern, only by 
incorporating that descriptive element into the model 
will one end up with a predictive model of the 
implications of using that product, and only then can 
one prescribe whether the product should in fact be 
used (the goal of the prescriptive model). We use a 
descriptive model inside the prescriptive model. 

In some ways the choice of modelling reality or good 
clinical practice can be defended either way, and it 
might be argued that it would be helpful to do the 
analysis both ways (ideal and realistic) to indicate the 
changes in recommendations depending on the level 
or standard of care actually delivered. This can help 
direct attention to aspects of care delivery that are 
crucial in making particular decisions optimal or not. 
There often will be a role for a model using some 
type of additional evidence. Figure 5 shows a very 
simple model where RCT data have been 
supplemented to increase the relevance of the model 
to final outcomes and economics. The success and 
failure data for the treatments in the RCT are used as 
further inputs to a model that incorporates extra-trial 
information on the percentage of those who fail 
pharmaceutical therapy who go on to surgery and 
who subsequently recover, die in surgery or continue 
with their chronic condition because no treatment 
was effective. Each of these outcomes can have 
associated costs and valuations added, combining 
economic data with a modified outcomes model. We 
note that the probabilities associated with recovery, 
surgical death, and continued chronic condition have 
been differentiated based on the preceding drug 
treatment. Thus here it is assumed that these 
probabilities will vary by initial drug treatment. This 
need not be the case, in fact it may be quite 
reasonable (and a useful simplifying assumption) to 
assume that these probabilities are independent of 
initial treatment. Thus the number of patients 
reaching the surgery nodes under each of the two 
treatments would presumably differ under the two 



treatment regimes, but the success rates of 
subsequent activity may not (it would probably be 
the case that in a model incorporating some 
inappropriate surgery, probabilities would need to be 
shown separately according to whether surgical 
guidelines had been followed). Box 2, on page 15, 
and Box 7 in Appendix 2 examine some of these 
probability issues in more detail. 

Here we introduce the other meaning of model. In all 
cases we have a model of the type described above. If 
we measure resource use, treatment failure rate, and 
what happens subsequently, we will have a model 
with observed evidence on all factors for the same 

group of patients (as discussed, this may or may not 
be the evidence one actually wants - good clinical 
practice or not for example). We might however still 
lack some of the evidence. In such a case we either 
cannot perform an economic evaluation or must 
'model ' the missing data. Modelling in this sense 
means that we conjecture what would be the case, so 
that we fill in the missing data that we did not 
measure. This conjecture can be taken from some 
measurement source outside the context of the other 
observations (such as databases for similar patients) 
or be based on more casual 'guesswork' as to what 
may be expected to happen to patients. 

Indirectly we have come to the issue of what type of 
evidence we will use in the model. Here we expand 

Figure 5 
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upon the second use of the term model with the 

introduction of elements of information from diverse 

sources into a model of the meaning already 

discussed. This second type of modelling effort 

corresponds to what might be thought of as linking 

of diverse sources of information into a (hopefully) 

coherent whole rather than making a model solely 

from a set of data based on a particular experiment 

for example a model based solely on trial information 

where one measures both outcomes and resource 

utilization. 

Table 2 Evolution of economic evaluations of 

medicines 

Sole concern for acquisition costs 

Consideration of some downstream implications of drug use 

(measured however possible, or just wishful thinking) 

C o n c e r n for careful measurement (adoption of R C T as a gold 

standard for economics) 

Realization of biases in R C T assessment 

Improving R C T design for economic evaluations 

Consideration of observational study designs 

w-

Recognition of benefits of combining evidence from multiple 

study designs to reduce bias 

Table 2 indicates some of the evolutionary steps in 

the development of economic evaluations in 

medicines. Early development of economic 

evaluation was based on models in the loosest sense 

of the term. Many of the early efforts (largely 

informal) at indicating the economic implications of 

various treatments tended to be rather casual 

'marketing stories' with little basis in real data other 

than a modicum of attention paid to possible 

beneficial effects that could have economic 

implications (generally not analyzed formally and 

with a minimal attention to probabilistic events and 

full consideration of all possible associated events). 

These efforts were largely speculative and based 

more on wishful thinking and casual conjecture. 

While often not explicitly using a model, these efforts 

implicitly based their hopes on a simple model -

usually extremely simple. Those types of efforts serve 

as a useful lesson as to the benefits of using formal 

modelling techniques. 

A second level in the evolution of economic 

evaluation techniques is found in the retrospective 

examination of data generally limited to 

measurements taken as part of earlier clinical trials or 

as part of a culling through databases. This data was 

also generally limited in scope, typically excluding 

much in the way of resource utilization or even 

clinical events not of direct interest to the trial -

ignoring failure rates or at least downstream events 

that follow treatment failure. Some of this data is 

collectable in databases, but other 

methodological/bias problems with databases have 

sometimes limited their value in these ventures. 

Many economic evaluations have been done based 

on data collected as part of an earlier effort with 

some other set of intentions. Frequently no resource 

use data have been collected in such efforts. To 

perform economic evaluations in such cases, we must 

use our second concept of a model - that 

corresponding to conjecture rather than actual 

measurement. In using the term conjecture, it is not 

meant that any casual approach is implied. 

Conjecture may be quite sophisticated and precise, 

but it is conjecture in the sense that the patients 

supplying the basis for the health outcomes data do 

not necessarily experience all of the events or use the 

resources that the model attributes to them. No direct 

measurements were taken. Rather, we conjecture that 

the patients having particular complications received 

particular services with particular frequencies and 

costs (and perhaps particular long term outcomes). 

Eddy (1992) has described this second use of model 

as a way of incorporating 'indirect evidence' with 

'direct evidence'. Thus the trial would be direct 

evidence that would be supplemented by the indirect 

evidence of events not measured directly in the trial. 

We have 'modelled' the resource use, and perhaps 

certain of the health outcomes. With retrospective 

analysis of data, particularly of that collected for 

noneconomic purposes, this type of modelling is 

unavoidable. 

More recent economic analyses have been done as 

part of data collection efforts that have explicitly 

incorporated economic variables into the study and 

data collection design in prospective trials. Some of 

these efforts are insufficiently informed or 

unavoidably constrained in the extent of the 

economic variables on which data are collected. In 

some cases it is simply practically impossible to 

collect all that is needed for economic evaluation in 



Box 2 Condit ional probabi l i t ies 

It needs to be emphasized that the probabilities in 
decision trees, as the branches within them proliferate, 
are conditional probabilities. That is, if event A occurs in 
a decision tree, then the probability of event B 
occurring (or not) in the next branch of the decision 
tree is the probability of B occurring given that A has 
occurred. This is typically quite different from the 
unconditional probability of B occurring. This 
unconditional probability, the marginal probability of 
B, is denoted P(B). The conditional probability of B 
occurring given that A has occurred is denoted 
P(B I A). Figure 6 below will assist in this discussion. 
We may think of the area described by the circle 
marked A in the figure as representing the probability 
of A occurring - its marginal or unconditional 
probability. The probability of A not occurring may be 
thought of as the area within the rectangle, but outside 
the circle A. Thus the rectangle area will be assigned 
the value one as an area. The area of circle A will then 
correspond to the probability of A which will be a 
fraction. The probability of A plus the probability of A 
not occurring is thus equal to one, or P(A) + P(not A) = 
1.0. The same holds for event B and the circle 
describing it. 

Figure 6 Condit ional probabi l i t ies 

Conditional probabilities are the probability of one 
event occurring given that another event has occurred. 
Just as P(A) is the fraction of the entire probability of 
'something' occurring (A or not A) which equals 1.0, so 
too the conditional probability is the fraction of a 
different probability - that of the event that one is 
'conditioning' on. Thus the probability of B conditional 
on A having occurred is the fraction of A for which B 
also occurs. In conditional probabilities, the circle A is 
analogous to the entire square in marginal 
probabilities. A fraction of the entire square represents 
the probability of event A; a fraction of circle A 
represents the probability of B happening conditional on 
A. This fraction is the area represented by the area A & 
B as a proportion of the conditioning event, area A. In 
mathematical notation this is represented as the area A 
& B divided by the area B: P(A & B) / P(A). 

The probability of A & B is the joint probability of these 
two events and is generally denoted P(A, B). The order 
in joint probability notation does not matter, so this is 
equivalent to P(B, A). Putting all these probabilities 
together gives us P(B I A) = P(A, B) / P(A). We could 
perfectly analogously write a formula for a different 
conditional probability, P(A I B) = P(A, B) / P(B). The 
numerators of these expressions are equal, but the 
denominators are not. We note that it should be clear 
that the two conditional probabilities will not 
generally be equal to each other unless in some 
fortuitous coincidence P(A) = P(B). Examining the 
figure indicates that in this case these two marginal 
probabilities and therefore the two conditional 
probabilities are not equal (see Box 4, on page 23, for 
an important example of confusion caused by such 
misconceptions). 

It is also that case that (at least in many examples we 
will examine in the medical field) there is another set 
of conditional probabilities that will also not 
generally be equal to each other. The probability of A 
conditional on the occurrence of B will not generally be 
equal to the probability of A conditional on B not 
occurring. 

(1) P(A I B) = P(A, B) / P(B) 
(2) P(A I not B) = P(A, not B) / P(not B) 

The only way for these probabilities to be equal is for 
the events to be independent of each other. In that 
case P(A, B) = P(A) P(B) and P(A, not B) = P(A) P(not 
B) and both conditional probabilities (1) and (2) are 
equal to P(A). As a practical example, the probability 
of death conditional on having cancer would not 
generally be equal to the probability of death 
conditional on no cancer. This is because the 
probabilities of cancer and death are not 
independent. 

What this may mean as a practical matter in decision 
analysis models is that we will need more data than 
we might originally think unless we are willing to 
make an independence assumption as one of the 
simplifications in the model building (see Tugwell et 
al 1985). For example, one may consider compliance 
rate as either a fixed rate or one that is conditional on 
the drug one is considering (or the type of patient, 
etc.). If compliance rate is considered to be a constant, 
one can use one estimate for all drugs in the model. If 
it is variable conditional on the drug or patient type 
then this information needs to be in the model and 
more data will be required to build the model -
conditional compliance probabilities will be needed. 

This is an important point, and it is important to 
recognize that either assumption can be correct 



Box 2 Conditional probabilities (continued) 

depending on the case at issue. In a model predicting 
the full costs of using birth control devices, one must 
consider what happens when the device fails to 
prevent pregnancy. When a pregnancy occurs, any of 
several events may happen. These may not depend at 
all on the device used and could then be considered 
independent events from the device (e.g. whether one 
used condoms or occasional abstinence as methods, the 
frequency of spontaneous abortion conditional on 
pregnancy might be expected to be the same (though 
perhaps not the frequency of pregnancy itself! - a 
different issue). 

On the other hand, when representing the frequency of 
expected elective abortions in a model, it might be quite 
important to know other details about the women 
being studied (religion, for example). Presumably the 
expected frequency of elective abortion will not be 
independent of religious background. Making the 
assumption that it is independent by virtue of using 

the same probability for all women may lead to 
significant errors in prediction. It is doubtful that 
anyone would explicitly make such an error in a model 
where religion was explicitly incorporated, but one 
could implicitly make the error by transporting a model 
across cultures with insufficient care (for example, a 
model with probability of elective abortion based on 
the religious attitudes of a representative sample of 
American women will probably not transfer without 
modification to Ireland). 

Decision trees are valuable tools for analysis, but are 
only as good as the assumptions going into them. The 
trees are constructed as conditional events - each event 
to the right of another is conditional on the event to its 
left. Decision trees (like computers) will generally do 
what analysts ask them to do without knowing 
whether it is correct or incorrect. The simplicity of the 
decision tree is beguiling, but it is only as accurate as 
its designer. Careful attention to detail is essential. 

conventional RCTs, most of whose primary purpose 
is supplying information for registration approvals. 
Thus here too we will need to supplement the data 
collection effort with modelling efforts to supply 
necessary information. We will see below that there 
are good reasons to employ such conjectural 
modelling. Even when economic variables are 
routinely collected as part of RCTs, solving one set of 
economic evaluation problems, there will remain a 
need for this type of modelling to accurately portray 
the real implications of using particular therapies. 

Section four discusses some potential problems with 
data from RCTs as the sole basis for economic 
evaluations, emphasizing the distinction between the 
'efficacy' (as measured by an RCT) and 'effectiveness' 
- the counterpart when measured under actual 
practice conditions. Section five discusses modelling 
as an approach to attempting to solve problems of 
bias identified in section four. It also outlines the 
problems of bias with other sources of data. Section 
six presents ways of combining data from multiple 
sources of identical or complementary design. Section 
seven addresses the issue of the acceptability of 
modelling studies. 



Box 3 The virtues of systematic thinking through model l ing 

One of the important virtues of formal modelling 
techniques is in keeping track of data and organizing 
thoughts in complex situations. One of the more 
striking examples of this comes from Eddy (1982) in 
which physicians were asked to answer a question 
about the use of screening in identifying breast cancer. 
The problem is presented below. 
The prevalence of breast cancer in a particular 
population of women is one in one hundred (.01). The 
accuracy of diagnostic mammography is assumed to 
be represented by sensitivity and specificity values of 
.792 and .904 respectively. These values are the 
proportion of similar women who would test positive 
if they actually had breast cancer and the proportion 
who would test negative if they truly do not have 
breast cancer. 
Given this information, the physicians were asked what 
the probability of cancer would be if a particular 
woman's test was positive. Ninety-five per cent of the 
physicians in the sample answered that the probability 
was about 0.75. In fact the correct answer is an order of 
magnitude lower (0.078). Such errors can imply 
significant overuse of further diagnostics, leading to 
higher expenditures (largely useless) and high levels of 
unwarranted stress on many of the affected individuals. 
What can explain this error rate? More importantly, 
perhaps, how can we avoid this type of error? 
Eddy suggests that the error may be due to a 
confusion of basic probability concepts by the 
physicians. It is clearly not the result of careful 
systematic thinking about the problem, but of casual 
approaches to decision making. Kahneman et al (1982) 
imply that physicians would not be unique in their 
confusion. However, in this particular case their errors 
can have significant consequences. Specifically, the 
physicians may be confusing the probability of 
obtaining a positive test conditional on having the 
disease (also equal to the sensitivity of the test) with 
the probability of having the disease given that one 
has obtained a positive test. These two conditional 
probabilities are not the same (as we saw in Box 2), 
and the implications of assuming that they are may be 
rather significant if errors of the magnitude mentioned 
above are made. 
Table 3 indicates the data needed to answer this 
question with asterisks next to the numbers given in 
the problem. All other numbers are calculated solely 
from those initial numbers. Figure 7 indicates a model 
of the calculations showing that they are quite logical 
(and border on at least relative intuition), something 
that the basic formula for obtaining the correct answer 
presented below does not share. 

P(CI+) = P(+ IC) P(C) 
P(+ IC) P(C) + P(+ I NC) P(NC) 

Table 3 Probability notation and numerical values 
Notation Meaning 

P (C) Probability of cancer (prevalence; prior) 

P ( N C ) Probability of no cancer [= I - P ( C ) ] 

P (+|C) Sensitivity (=probability of a positive 
test given cancer is present 

P (-|C) (I — sensitivity) =probability of negative 
test given that cancer is present 
= false negative 

P ( -|NC) Specificity (=probability of negative 
test given no cancer is present) 

P (+|NC) (I - specificity) =probability of positive 
test given that cancer is not present 
= false positive 

P (+ ,NC) Joint probability of having no cancer and 
a positive test [=P(NC,+)] 

P (+,C) Joint probability of having both cancer 
and a positive test [=P(C,+)J 

P (+) Probability of a positive test result 
=P(C,+) + P(NC,+) 

P (C|+) = Posterior probability (probability of 
cancer given a positive test) 

Source: Rittenhouse 1994 

Numerical 
value 

(0.01)* 
(0.99) 

(0.792)* 

(0.208) 

(0.904)* 

(0.096) 

(0.095) 

(0.008) 

(0.103) 

(0.078) 

This formula will yield the correct answer, but lacks 
intuition. The model provides at least some intuition 
once it is explained as well as a systematic way of 
reconstructing and communicating the process and 
results (for more detail see Rittenhouse 1994). From the 
left of the figure we see one decision tree, beginning 
with prevalence of disease P(C), one of the initially 
provided pieces of information. From this prevalence 
we can also calculate the prevalence of no disease 
P(NC) since all probabilities at chance nodes must sum 
to equal one. Figure 7 provides the general notation 
while the table provides the specific numbers. Given 
the presence or absence of cancer we have data on the 
results of tests (sensitivity, P(+ IC) and specificity, 
P(-l NC). These are conditional probabilities, and since 
chance node probabilities must sum to equal one, we 
can calculate the complementary probabilities at each 
of the chance nodes [P(-1C) and P(+ I NC)]. All the 
probabilities in the left side decision tree are thus 
known and one can calculate (as shown in Box 2) the 
joint probabilities of each of the branches [eg P(C,+)] as 
the multiplication of the constituent path probabilities 
(the appropriate marginal and conditional 
probabilities) leading to each of the four terminal 
nodes (outcomes) [eg P(C,+)=P(C) P(+ I C)[. 



Box 3 The virtues of systematic th ink ing through mode l l i ng (continued) 

Figure 7 Calculat ing updated probabil i t ies of cancer after a disgnostic text 
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The right side of Figure 7 shows a 'flipped' decision 

tree based on the same data. We will proceed to 

calculate and fill in the probabilities. First we can start 

with the aforementioned joint probabilities and move 

them from the left side tree to the right side 'flipped' 

tree (the leftmost part), switching the positions of the 

joint probabilities as indicated by the arrows to account 

for the alteration in their placement given the different 

structure of the trees. We can now fill in the 'marginal' 

probabilities at the rightmost side of the right side tree. 

There are two ways and only two ways of having a 

positive test - with and without cancer accompanying 

it. These two joint probabilities thus summed will give 

the probability of a positive test [P(+)J. One may 

perform a similar calculation for the probability of a 

negative test or simply use the knowledge of P(+) and 

the fact that the chance node probabilities must sum to 

equal one, implying that P(-) = [1 - P(+)]. Now all 

probabilities in the right tree are known except for the 

conditional ones, one of which (P(C I +)) is of interest in 

that it is the answer to the question posed, the 

probability of disease given a positive test was 

obtained. We can use the knowledge from Box 2 again 

to calculate these probabilities from the joint and 

marginal probabilities [P(C I +) = P(+,C)/P(+)]. The 

answer is the same as that which would be given by 

the equation above, but (at least in retrospect) the 

process is simpler (and easy to reconstruct upon 

reflection). Such a model can assist in keeping the 

concepts clear and avoiding the mistakes so common 

in casual thinking about such problems. 



'Very true' said the Duchess: 'flamingoes 
and mustard both bite. And the moral of 
that is - 'Birds of a feather flock together." 
'Only mustard isn't a bird,' Alice remarked. 
'Right, as usual,' said the Duchess: 'what a 
clear way you have of putting things!' 
- A L I C E IN W O N D E R L A N D (Freedman et al, 1 9 9 1 , p.133) 

Various types of evidence can be brought to bear on 
an issue by incorporating them into a model. We 
have seen that many early models of the economics 
of pharmaceuticals had to rely on indirect evidence 
for particular data since none had been collected as 
part of the trial upon which most of the economic 
analysis is based. In later efforts where one is 
intending to collect economically relevant data as 
part of the trial, one remains limited sometimes by 
other development concerns e.g. not overly 
burdening trial investigators. The primary purpose of 
the trial is registration; this goal will not be sacrificed 
to make a trial more relevant to economics. When 
data requirements for economics appear to be overly 
burdensome for trial investigators, they are left out. 
In part one might argue that these problems are in 
the past. As it is acknowledged that economics is 
important both to the sponsoring company and to 
others, these problems may solve themselves. It may 
be argued that we no longer have to use indirect 
evidence in models - we can measure directly and 
not "model" reality by using indirect evidence. It is 
interesting to ask the question, if trial developers 
handed over the reins tomorrow to economists, 
would the need for this incorporation of indirect 
evidence into a model disappear? To a degree the 
answer must be 'it depends', specifically on how 
much true latitude the economist would have. But let 
us say that the goals of registration must still be met 
in these same trials thus limiting to a degree the 
latitude to radically alter conventional trials. Are the 
problems now absent? Here I will present the case 
that we would still need models, at least if we want 
to have reliable predictions of the economics of 
products once they are on the market. Much of this 
discussion follows that of Rittenhouse (1995, 1996) 
and Rittenhouse and O'Brien (1996) to which 
interested readers are referred for additional details. 

The randomized, blinded controlled clinical trial 
design (RCT) is the workhorse of the evaluation 
process in pharmaceuticals. This design answers the 

question of efficacy: 'can this product be superior to 
(usually) placebo?' It answers this question very well. 
Perhaps its chief strength is that it eliminates (or at 
least does better than any other possible design) 
potentially confounding influences on the 
observations of treatment effect. It achieves a high 
level of what is called 'internal validity,' or what 
Senn (1990) has called 'proof within the trial.' 
Dispensing with randomized allocation of patients to 
treatment arms in a trial or reducing the control will 
weaken the inference regarding treatment effect 
observed in the study. In a well-designed RCT, the 
inferential basis from cause to effect is a strong one -
for the populations studied under the conditions under 
which they were studied. When one infers from such a 
trial that one product is superior, one can have a high 
degree of confidence that the experiment in fact truly 
indicates this and the result is not due to some other 
influences on outcome. That is the chief goal for 
registration purposes. 

What is often ignored in discussions of whether RCTs 
are the appropriate vehicle for answering other 
questions is that there are two types of validity. The 
other type is 'external validity' (Cook and Campbell, 
1979) and is more or less synonymous with 
'generalizability' - does the result translate to other 
contexts? It is with other contexts that economists are 
concerned - how will the product work in practice, 
not can it work. This is the question of effectiveness: 
'how does the product work in the practical 
environment in which it will actually be used?' 
Critics of nonexperimental methods (non RCT 
methods) often seem to de-emphasize the importance 
of this type of validity, sometimes implying that there 
is only a general type of validity to research (see for 
example Sheldon, 1994). Medicines are not 
administered under randomized blinded or 
controlled conditions in the real world of clinical 
practice. They are not administered by reference to 
strict protocol. The individual patients who receive 
them are not selected according to particular traits 
(e.g. the lack of comorbidities and the willingness to 
be randomized in an experimental trial). Numerous 
issues associated with the RCT imply that it may be 
quite poor in terms of its external validity. Table 4 
lists some of the potential problems with the RCT 
when it is employed in the service of economic 
evaluations. Each of these topics will be discussed 
briefly below. 



Table 4 Potential problems with RCTs used as the 
basis for economic evaluations 
Choice of Comparison Therapy 

Protocol-driven Costs and Outcomes 

Artificial Environment 

Intermediate v Final Outcomes 

Inadequate Patient Follow-up 

Selected Patient and Provider Populations 

Choice of comparison therapy 

One of the more fundamenta l problems associated 
with the RCT-based pharmacoeconomic s tudy is that 
the chosen comparison therapy is of ten not that which 
is relevant or most relevant for policy questions of 
interest. The most obvious case of this problem is the 
placebo compar ison which has no relevance at all to 
practical policy as a placebo will never be a practical 
alternative. Showing relative superiority (and 
appropr ia te pharmacoeconomic studies must a lways 
be comparat ive) to placebo is s imply not relevant. 
When the policy-relevant alternative is an active 
treatment, the placebo is clearly not going to represent 
that treatment. Even when the relevant alternative is 
no treatment, placebo will not represent that either 
unless placebo effects, the very reason for including 
placebos, are wholly absent. 

Less clear is the frequent irrelevance of chosen 
controls even when the trial design incorporates 
active controls. The most relevant alternative may be 
n o n d r u g therapy. The early economic evaluation of 
cimetidine for use in duodena l ulcer used a 
comparison of surgery al though the trials for product 
approval were done against placebo (Culyer and 
Maynard, 1981). Most studies choose comparison 
therapy wi thout regard to practical policy questions 
concerning the relevant compara tor for economics. It 
is no t a lways clear wha t this alternative would be 
even were deve lopment depar tments specifically 
sensitive to the needs of economic evaluation. What is 
relevant to one policy context is not necessarily so in 
another. This is evidenced by recent publication of 
guidelines for economic evaluat ions by both 
Australian and Canadian authorities. In the Canadian 
guidelines the relevant compara tor is stipulated to be 
both 'existing practice and m i n i m u m practice'. 
Existing practice (which explicitly acknowledges 
nondrug possibilities) would either be the single most 
prevalent clinical practice (if there is one that is 
dominant) , or it could be current practice weighted by 

market share. Min imum practice wou ld normally be 
either the lowest cost comparator that is more 
effective than placebo, or the do-nothing alternative, 
as appropr ia te (CCOHTA, 1994). In the original 
version of the guidelines for Australia, the relevant 
alternative was the most widely used alternative 
(Drummond, 1992). The revised guidelines, while 
defining the concept more precisely, appear to appeal 
to the same basic notion (Commonweal th Depar tment 
of H u m a n Services and Health, 1995). 
D r u m m o n d et al (1993) make a fur ther point -
proving that a therapy is cost-effective incrementally 
against a trial comparator does not mean that it is 
cost-effective incrementally against the relevant 
alternative. If society is using a product , assuming 
incorrectly that it is cost-effective, and a new product 
is shown to be incrementally cost-effective against it, 
we may be missing the relevant comparison. That 
comparison may be against doing nothing or at least 
some alternative not considered in a trial. 
With the frequent global deve lopment plans of many 
pharmaceutical companies and the multicenter, 
mult icountry trials used to fulfill those plans, it is 
clear that any particular RCT may have a difficult 
t ime in satisfying the sometimes compet ing needs of 
varying purchasing authorities. The problem may 
become more acute in decentralized environments 
such as the US where any payer may develop its own 
criteria as to relevant comparator depend ing on wha t 
is currently on its formulary. While the Canadian 
guidelines may be the most theoretically appropr ia te 
in st ipulating the relevant comparator (they were 
developed by consensus building and based on state-
of-the-art methods) the relevant comparator in 
practice is not going to be the same in all 
environments . Consequently, a trial using the right 
comparator for one customer of economic evaluation 
will be using the wrong one for another. The solution 
will need to be one where modell ing is done to 
predict the performance of the relevant alternative, 
perhaps incorporating results of RCTs using those 
alternatives. A multiplicity of clinical trials to answer 
the question in an RCT f ramework is simplv not 
practical even if it were desirable. 

Particular procedures to ensure the compliance, safetv 
or optimal care of patients participating in medical 
trials may not be done in general practice, thus the 
costs observed in a trial will be overestimated as 



compared to real clinical practice. It is also possible 

that costs in a trial may be underestimated. It may be 

that appropriate levels of care are less than those 

supplied in practice (or at least in some practices). This 

may be simply due to lack of information, or outdated 

information, or to the practice of 'defensive medicine' 

in countries like the US with particularly active 

malpractice attorneys. Regardless of the cause, the 

state-of-the-art medicine practiced in many trials may 

in fact be quite different than in general practice. This 

may have implications for both health outcomes and 

the costs of achieving them. 

A particularly good hypothetical example is provided 

in Eisenberg et al (1989) where the authors speculate 

on the effects of routine testing within a trial for the 

presence of subclinical disease when the same level of 

testing would not be performed in general clinical 

practice. The example shows the ambiguous effects on 

number of cases identified and the average cost of a 

treated case (see Box 4 on page 22). The earlier 

detection with the protocol-mandated procedures may 

identify more cases (some of which would never 

manifest symptoms), but the earlier detection may 

imply more straightforward and simpler (less costly) 

treatment of those cases. Untangling these effects of 

protocol-mandated procedures is not trivial. What is 

clear is that the trial results may bear little resemblance 

to those to be expected in general practice - in terms of 

health outcomes or costs of achieving them. 

The protocol that identifies patients for the RCT can 

inject biases. If a screen is necessary to identify 

patients eligible for the trial, a screen that is more 

accurate than that used in practice will identify more 

true positive cases. As such drugs will have inflated 

efficacy over that to be expected in the more general 

population. Russell (1994) has observed that labs 

involved in clinical trials of cholesterol-lowering 

agents use a difficult, but accurate method for 

measuring blood cholesterol - the modified Abel-

Kendall method - whereas most general labs use a less 

precise method and are less diligent about accuracy. A 

1985 study by the American College of Pathologists 

found extremely large variations in lab reports on a 

sample with a known cholesterol value of 262.6 mg/d l 

ranging from 101 to 524 (Garber et al, 1989). Similar 

results were obtained in subsequent surveys. Since 

LDL levels of cholesterol are the basis for final 

diagnosis and treatment and these levels are 

determined from results from total and HDL levels 

(the latter being even less accurate than the total 

levels), there is room for significant concern about the 

level of accuracy in diagnosis and treatment in general 

practice. There is likely to be significant 

misclassification in the real world relative to that of 

trials. This will reduce the possible benefits from 

cholesterol lowering therapy which are already in 

doubt for other reasons. 

The Canadian guidelines include a suggestion that 

'protocol-driven costs should be excluded if they 

would not occur as part of the intervention on a 

regular basis' (CCOHTA, p.31). However, there is no 

mention of the mere exclusion of such costs being an 

incomplete correction for all protocol-induced effects 

on a trial. The ambiguity of protocol-driven effects on 

both costs and outcomes is neatly illustrated in 

Eisenberg et al (1989) referred to above and discussed 

in Box 4. The subclinical disease is treated in the trial; 

however, such treatment would not typically be done 

in practice. Thus it is clear that protocol-mandated 

testing can affect not only costs (by including the costs 

of the tests) but also outcomes and thereby the 

downstream costs of the trial. Furthermore, the effect 

on cost is ambiguous. The early identification of 

subclinical disease, some of which would never 

manifest itself as clinical disease (false positives of a 

sort) may imply a greater cost in the trial as more of 

these cases would be observed in that environment. 

Countering this effect might be the earlier 

identification of subclinical disease, perhaps enabling 

quicker and cheaper treatment or prevention, arguing 

for lower costs in the trial. The effect on costs is 

ambiguous; however, it would appear that the effect of 

such testing would have on outcomes measures is 

unambiguous. Outcomes will clearly be better than 

those to be expected in practice. Untangling these 

various influences on costs and effects is not a simple 

matter. Often the problem is not even acknowledged. 

Artificial environment 

In a trial patients are often reminded explicitly or 

implicitly of the importance of compliance with 

medication taking directives. Patient diaries of 

medication taking behaviour are common. As a 

consequence, even for drugs for which compliance 

may differ in general practice, there may be little 

indication in the trial of the difference. To the extent 

that this compliance level is important for treatment 

outcome, treatment outcomes may be more similar in 

the trial than those to be expected in general practice. 



Box 4 The ambiguous effect of protocol-induced costs on costs and outcomes 

Eisenberg et al (1989) have provided a hypothetical 
example of the ambiguous effect that subclinical 
detection in a trial can have on the economic 
evaluation of treatments. The case is one in which two 
prophylactic treatments are compared in an RCT where 
active case-finding (testing for subclinical levels of 
disease) and passive case-finding (reacting to clinical 
symptoms) are both pursued but where in routine 
clinical practice only passive case-finding would be the 
norm. Figure 8 below represents the case findings for 
100 patients under routine care (left) and the RCT 
(right) assumptions. Table 5 presents the cost 
assumptions used in this example. In the RCT 12 
subclinical cases are detected. In the routine practice, 
none of these would be detected at that level, though 
10 exist (they are assumed to never develop to clinical 
cases). These figures imply that two of the subclinical 
cases detected in the trial would have developed 
clinical symptoms had they been investigated under 
passive case-finding. In general we can see that the 
RCT enables earlier detection, with fewer cases being 
in the more severe ranges. 

Multiplying the numbers in each of the figures by the 
respective additional treatment costs at each level of 
detected disease, as set out in Table 5, yields the total 
costs of treating these 100 hypothetical patients under 
the two prophylactic regimes (note that in the routine 
care case, no expenditure is made on subclinical cases 

Table 5 Cost per case in hypothetical clinical trial 

Type of disease Average cost 

Undetected subclinical disease 
Detected subclinical disease 
Mild disease 
Moderate disease 
Severe disease 

(From Eisenberg, et al., 1989) 

$0 
$90 

$100 
$200 
$300 

since they remain undetected). For the routine care 
case there are 32 cases detected and treated at a cost of 
$5500, or an average of $172 per case. For the RCT, the 
number of cases is 42 (it includes the 10 subclinical 
cases that will never develop symptoms) and the total 
costs are $5880, yielding an average cost of treatment 
of failed prophylaxis of $140. We can see that the total 
costs of treating the failed cases is higher in the trial, 
but lower in an average per case basis. The authors 
continue their example to show that under further 
hypothetical assumptions, the RCT results indicate a 
cost-saving treatment while the routine care results 
indicate a modest increase in cost for the derived 
benefit. Thus the economics of the treatments can be 
affected by the effects of protocol induced procedures. 
They could either increase of decrease average per 
case. It is not generally predictable. 

Figure 8 Number of cases in usual care versus a hypothetical trial 

Number of cases 
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10 

Usual care 

10 
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Subclinical Mild Moderate Severe 

(from Eisenberg, et al., 1989) 
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16 
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I n t e r m e d i a t e v f i n a l o u t c o m e s 

It is often necessary in order to obtain results in a 
timely or less costly manner to use intermediate 
endpoints in a trial. In some cases final outcomes are 
not as frequent (at least within the time period of 
study). Thus a study may be designed and the 
sample size chosen to assess an intermediate 
endpoint that will occur more frequently within the 
study period. These results are of limited value to 
economic evaluation. The achievement of an 
intermediate endpoint means little in and of itself for 
economic evaluation (or for health outcomes in 
general for that matter). Economic assessment must 
depend on final outcomes and their valuations and 
costs of achieving. Intermediate outcomes are useless 
unless they are linked via a model to these other 
outcomes that are of ultimate interest. Intermediate 
outcomes may wholly misrepresent the reality of the 
situation by emphasizing differences that may not be 
apparent in final version. Brody (1995) reports that in 
the TIMI-I trial of tPA versus streptokinase for 
example, the primary endpoint was 'patency of the 
infarct-related artery' within 90 minutes of infusion 
of the study drug. In part this endpoint was chosen 
because it enabled a considerable reduction in sample 
size as compared to that necessary had mortality 
been chosen as a primary endpoint. This trial was in 
fact terminated early because of the substantial 
differences between the study drugs in achieving the 
endpoint (70 per cent v 43 per cent). The implications 
of that endpoint appeared to be dramatic; however, 
later results indicated that such an endpoint did not 
translate into final outcomes of nearly as marked 
significance. It is clear, therefore, that intermediate 
endpoints can be highly flawed in indicating health 
outcomes. They are also unable alone to indicate the 
resource utilization ultimately traceable to the 
therapy unless supplementary data are incorporated. 
Thus from a resource utilization and a health 
outcomes perspective, intermediate outcomes are 
insufficient and must be supplemented in some 
manner to answer the questions of ultimate interest. 

Frequently an economic analyst is faced with a data 
set that abruptly ends just when the data become 
interesting. In many cases data collection in a trial 
ends when a patient reaches certain predefined 
endpoints. These are not always endpoints of most 

interest to the economist. For example, patient 
withdrawals from therapy and drop outs from a trial 
are frequently related to treatment. When this is the 
case, alternative therapies must be used and, if the 
causal event for the treatment discontinuation was an 
adverse reaction, treatment of the reaction may imply 
resource consumption. In some cases the withdrawal 
of the treatment could cause a worsening of the 
underlying disease at least until alternative therapy 
can be introduced. In cases where therapy is used in 
prevention of acute events, the withdrawal of 
treatment could induce such a manifestation (e.g. 
antiepileptic drugs and seizures). These effects and 
resource utilization are attributable costs to the failed 
drug therapy, but often, beyond documenting that a 
withdrawal occurred and whether it appeared to be 
treatment related, traditional RCT data collection 
ceases at this point. Data on what happens next can 
be extremely important to the economist. 

p o p u l a t i o n s 

In order to reduce the potential for confounding 
influences on treatment effect, RCTs frequently 
restrict the population in studies to a relatively 
homogeneous set of individuals by, for example, 
excluding patients with comorbidities or certain age 
groups. Such exclusions may imply a biased response 
compared to what is to be expected when a broader 
range of patients are treated. Other patients may 
simply react differently to the treatments (efficacy or 
adverse reactions). For example the efficacy of blood 
pressure reduction on severe hypertensives may 
differ from that on mild hypertensives (rarely is a 
drug never cost-effective, or, indeed, always cost-
effective, but rather it is or is not only in particular 
populations). Unless the drug is to be used in exactly 
the same types of persons as in the trial this is always 
a hazard - it is not necessarily the case that the drug 
would not work, but that it would work less well, 
and the economic implications of reduced benefit 
may be that the product would not be cost-effective 
in the expanded population (Russell, 1994). Also 
there is a more subtle difference. Patients agreeing to 
be randomized into a trial to test medications tend to 
be healthier than the average patient. They also tend 
to be more compliant. These effects can interact with 
drug attributes to produce absolute and relative 
differences in outcomes. Senn (1990) has observed 
that 'such patients are not a random sample from any 



useful population to which we might wish to 

generalize results, nor could they ever be, since by 

definition of being involved in a trial they have all 

given consent.' 

The differential abilities of providers are also 

potentially leading to bias in results. The provider 

population in most trials is far from representative of 

the general provider population. Rather one often 

sees some of the best investigators at the best medical 

centers involved in trials. Outcomes are likely not 

representative of general practice. Rittenhouse (1995) 

has shown the potential for bias traceable to the 

differential diagnostic abilities of physicians in a 

pivotal trial versus those in a sample of general 

practice. When the diagnostic abilities are less 

accurate and many of the patients receiving the drug 

of interest are unable to benefit from it, the economic 

picture can become rapidly unappealing. 

Some of the problems discussed above can be limited 

by more careful design of RCTs (if those in control of 

the design are receptive to the needs of economists). 

Thus, the problem of inadequate follow-up can be at 

least partially addressed by extending follow-up to 

all patients in the trial, including those who 

discontinue treatment prematurely. Other problems 

will remain however. Certain problems are inherent 

in the designs of RCTs - randomization for example. 

It is clear also that trials will of necessity continue to 

use exclusion/inclusion criteria to homogenize the 

trial population. The use of randomization and 

specified entry criteria for RCTs are strengths for 

showing efficacy, but can be weaknesses for 

economic evaluation. All of this implies that the RCT 

will continue to be a flawed device for measuring 

what economists want to measure. Two alternatives 

exist. One is to wait and do economic analysis after 

marketing approval is obtained when less controlled 

trials can be done or when other study designs are 

useable. While it may be interesting to do these 

studies, it is clear that economic results are quite 

useful earlier in the drug diffusion process for both 

manufacturers and purchasers. Even were this option 

a realistic one, the inherent biases of other (e.g. 

observational) study designs may make the reliance 

on them equally problematic. The other solution is to 

incorporate modelling to a greater extent than is 

currently practiced, admitting the biases of all study 

designs, measuring them and attempting to correct 

for them. 

Of course, these are not mutually exclusive 

alternatives. Modelling (drawing on evidence from 

pre launch RCTs) can be used to hypothesize likely 

real world cost-effectiveness, with subsequent 

"naturalistic" trial data or other study results being 

generated and used to validate or revise the model. 



'The fact that such studies seem difficult to 
justify when judged by the standards of 
clinical trials is not sufficient to condemn 
them. \Ne do not call geology malformed 
because it is not pln/sics.' 
- S . SENN ( 1 9 9 0 ) 

While Senn's comment quoted above was directed at 
the defense of case-control studies specifically (a 
particular type of epidemiologic study), it is 
applicable to the general area of observational or 
nonexperimental studies and modelling efforts. 
Nonexperimental designs often offer advantages in 
terms of cost, time, appropriate research design for 
the problem at hand and ethics (Eddy, 1990). While I 
will focus here on the issue of appropriate research 
design, the cost and time involved in RCTs is a major 
practical disadvantage. If they were the only 
legitimate method, these criticisms might carry less 
weight; however, they are not the only method 
available. Moreover, they may not always be the best 
method for the task at hand in economic evaluation. 

The Canadian guidelines (CCOHTA, 1994) for the 
economic evaluation of pharmaceuticals emphasized 
that 'pharmacoeconomic studies should use 
effectiveness data,' but offer little guidance as to 
where such effectiveness data are to come from at a 
time when products are not yet marketed. Prelaunch 
studies will only have access to efficacy data from 
trials. 'Thus, prelaunch... studies must extrapolate as 
best the can from trial efficacy to utilization 
effectiveness. The assumptions used in this 
extrapolation (for example, patient compliance rates) 
must be explicit and must be tested thoroughly with 
sensitivity analysis.' (CCOHTA, pp. 24-5). It is 
primarily through modelling efforts that such 
'effectiveness' data can be extrapolated from 
estimates based on efficacy. 

Eddy (1990) has suggested that the typical approach 
to evaluation is to label a particular method or study 
as "biased" and thereafter ignore it or to accept it as 
containing acceptable levels of bias and thereafter 
accept it at face value, ignoring the bias altogether 
(Figure 9). Typically RCTs are accepted as evidence 
and the biases discussed above are largely ignored -
their results are usually accepted at face value. Other 
standard epidemiologic study designs that may be 
much less expensive to conduct are dismissed as 
'biased' as compared to the presumed gold standard 

Figure 9 Typical approach to evaluation of bias in 
data (Eddy, 1990) 

Acceptable 

Not acceptable 

Accept study at face value 
(ignore bias) 

Ignore study 

of the RCT. In practice, those with a strong preference 
for RCT based evidence do often recognise the 
relevance of other sources of evidence, providing the 
potential for bias is explored and taken into account. 
The NHS Centre for Reviews & Dissemination (CRD) 
(1996) gives an example of a hierarchy of evidence, 
reproduced as Table 6 below. 

Table 6 An example of a hierarchy of evidence 

Experimental 

I Well-designed randomised controlled trials 

Other types of trial: 
II-1 a Well-designed controlled trial with pseudo-randomisation 
II-lb Well-designed controlled trials with no randomisation 

Observational studies 

ll-2a Well-designed cohort (prospective study) with concurrent 
controls 

ll-2b Well-designed cohort (Prospective study) with historical 
controls 

ll-2c Well-designed cohort (retrospective study) with concurrent 
controls 

11-3 Well-designed epidemiological case-control (retrospective) 
study 

III Large differences from comparisons between times and/or 
places with and without intervention (In some 
circumstances these may be equivalent to level II or I) 

Expert opinion 

IV Opinions of respected authorities based on clinical 
experience; descriptive studies and reports of expert 
committees 

Source: NHS Centre for Reviews & Dissemination (1996) 

The CRD paper includes sources of checklists to help 
assess the quality and likelv validity of data from both 
experimental and observational studies. It notes that 
'validity depends not only on the type of study but 
how well it was designed, carried out and analysed' 
(NHS Centre for Reviews & Dissemination 1996 p32). 



In practice an element of pragmatism is therefore 
required. Some forms of bias are more problematic 
than others, and the optimal source of information or 
mode of study may depend on the specific context. 
The best method of attacking the analytic problem 
may be through combining information from a 
mixture of study designs, adjusting results for biases, 
in a modelling exercise. This is, in effect, the strategy 
that Eddy proposes in his 'flexible, but firm' approach 
to technology assessment (see Table 7). The flexibility 
is implied by the willingness to incorporate data that 

Table 7 'The flexible, but firm' approach to 
evaluation (Eddy, 1990) 

1. Drop preconceived notions of acceptability of various 
research designs 

2. Gather whatever evidence exists 

3. Identify biases 

4. Estimate the magnitudes of bias 

5. Adjust results for bias 

6. Use the adjusted results as the best estimate available for 
decision making 

does not come from RCTs. The firmness is based on 
the utilization of formal statistical models of biases 'to 
incorporate focused subjective judgements (not global 
clinical impressions)' and to adjust results for bias. 

A suggestion often proposed to 'solve' the problems 
associated with measurement under conditions of 
potential bias (or uncertainty in general) is the use of 
sensitivity analysis. Sensitivity analysis refers to the 
variation of a particular parameter value in a model, 
for example the rate of a particular side effect's 
occurrence, in order to examine the result of such 
variation on the model conclusions. The idea is 
typically invoked because of a lack of certainty about 
the value in question. If the results are relatively 
insensitive to variation in the value, the results are 
considered to be more robust than if this is not the 
case. Sensitivity analyses are no panacea however 
(O'Brien et al, 1994a). Typically, a given value is 
varied from its baseline value in the model by both 
increasing and decreasing the value. There is no rule 
as to how much to vary the parameter other than 
what appears to be reasonable. The choices are 
entirely subjective. When 19 out of 20 sensitivity 
analyses indicate no change in conclusions, can we 
claim that we have produced something like a p-
value of .05? The answer is clearly no, because there 

is no theory of random (or any other kind of) 
sampling underlying sensitivity analyses. The fact 
that variation did or did not produce some particular 
level of change in the model's conclusions has no 
such interpretation. 

Many analyses use univariate sensitivity analysis -
varying only one parameter at a time - which only 
captures the effect of minor change in the overall 
model, particularly if there are many biases infecting 
numerous parameter values. Some have attempted to 
solve this difficulty by performing multidimensional 
sensitivity analyses - varying several parameters at 
once. Sometimes this is quite beneficial; however, it 
rapidly can turn a report into pages of numerical 
results from the sensitivity analyses. Again, with no 
theory behind these sensitivity analyses, there is little 
to guide one in their interpretation unless the results 
are completely insensitive to any changes, an 
unlikely situation. 

There have been several attempts to improve upon 
the scientific and theoretical basis of sensitivity 
analysis. Doubilet et al (1985) explores 'probabilistic 
sensitivity analysis' which bases the variation in 
values of any particular variable on a distribution of 
those values (hypothetical or estimated). O'Brien et al 
(1994a) have developed an approach to developing a 
confidence interval for cost-effectiveness analyses. A 
combination of these approaches may offer hope for 
the future, but presently, these methods are still being 
developed. Briggs (1995) provides a helpful summary 
of these concepts. 

Sensitivity analyses do have a role to play, despite 
their subjectivity. They are themselves a modelling 
technique. However, they are best put to use after 
attempts have been made to reduce the potential 
biases in the underlying model (Rittenhouse, 1995). 
Thus the bias in study results is measured and 
applied as a 'corrective' to develop a baseline set of 
parameters for the model. These parameters are then 
varied in a sensitivity analysis. We start from a more 
realistic set of baseline values, and can have greater 
confidence that our sensitivity analyses in total have 
a reasonable foundation. 



'Data! data! data! he cried impatiently. 
7 can't make bricks without clay.' 
-SHERLOCK HOLMES (Freedman, 1991, p.305) 

In recognition of the frequent inability of any one 

study to shed sufficient light on many of these 

complicated medical issues, methods have been 

developed to combine evidence from multiple 

sources to more definitively describe treatment 

influences. Here we will very briefly describe two of 

them: meta-analysis and cross-design synthesis. 

These methods are themselves models and their 

results can be useful inputs into other economic or 

health outcomes models. 

Meta-analysis is a term describing techniques of 

combining evidence from different studies (usually of 

similar design). While the term itself is relatively n e w 

(Glass, 1976), the methods have been used since the 

1930s (Petitti, 1994). Meta-analysis is a systematic and 

formal mathematical alternative to a literature 

review. It attempts to quantify and combine evidence 

from multiple sources in a more objective manner 

than the less formal literature review. Frequently this 

effort is motivated by the inability of any individual 

study to pronounce on the question at hand. 

Combined, the studies may reach statistical 

significance where individually they do not. 

Meta-analysis requires identification of studies as well 

as their integration. Because of potential publication 

biases, identification of studies may not be a simple 

task. Casual approaches to identification of studies 

may lead to biases in the meta-analysis (Sheldon, 

1996). The first step in a meta-analysis is to identify all 

studies available in the area of interest. Some of these 

m a y never have been published. The lack of 

publication may be the result of poor study design, 

unattractive results or negative result publication bias. 

With the latter two reasons, studies should still be 

examined for inclusion in the meta-analysis. Such 

studies may be crucial in their indications that run 

counter to the published literature. 

Once studies are collected, thev must be reviewed 

according to explicit criteria for determining quality 

of the study and ultimate suitability for the meta-

analysis. This is often done by a 'bl inded' reviewer 

(authors and journal references deleted for the 

reviewer) to avoid bias. The criteria for inclusion 

often include the relative comparabil i ty of studies 

(experimental , nonexperimental , bl inded, 

randomized, etc.). The use of explicit criteria is to add 

to the reproducibility of the meta-analysis - one 

attempts to el iminate or reduce the subjectivity of 

reviewer decisions on the suitability of the studies. 

Once studies are selected, the data must be abstracted 

from them in order to be combined in the meta-

analysis. This too should be systematized to ensure 

reliability (specifying h o w one will deal with missing 

data for example) . Lastly, statistical analysis of the 

combined data is done according to any of several 

methods (Petitti, 1994). Part of the statistical 

procedure is to check for 'homogeneity. ' As L 'Abbe et 

al (1987) have noted, 

'an underlying assumption in combining individual 

study results to arrive at a summary measure is that 

their differences are due to chance alone (sampling 

variation), and therefore all study results are 

homogeneous, that is they reflect the same 'true' effect. In 

other words, when results are combined, random error 

cancels out and 'n' [study] results are better than one.' 

The check for homogenei ty involves formal statistical 

techniques; however, the power of these tests tends 

to be low because of the typically small number of 

studies involved in a meta-analysis. L 'Abbe et al 

(1987) suggest therefore when formal tests fail to 

reject the homogenei ty assumption (the likely result 

with a low power) that ' informed subjective 

judgement ' be utilized. When the c o m m o n measure 

of outcome in the studies within the meta-analysis is 

judged to be homogeneous , a summary measure can 

be derived from pooling the results. L 'Abbe et al 

(1987) provide a checklist for rating meta-analyses 

that is reproduced as Table 8. 

Table 8 Check l i s t to evaluate qual i ty of meta-

analys is 

Is there evidence of a working protocol? 

Are literature search strategies explicitly described? 

Are inclusion and exclusion criteria specified, papers included and 

excluded listed, and reasons given for exclusions? 

Are visual displays and tests of homogeneity done? 

Are appropriate statistics and sensitivity analyses employed? 

If the pooled analysis shows significant differences, is the issue of 
publication bias addressed? 

Are conclusions drawn for treatment recommendations 
(beneficial, equivocal, harmful) and for future research? 

(L'Abbe. et al., 1987) 



The lack of homogeneity of results between studies is 
considered to be a problem in traditional meta-
analysis. In a new type of study that integrates 
results across other studies, lack of homogeneity is 
not a problem. Indeed, it is almost a goal in itself. 
More accurately, the goal is heterogeneity of study 
design; the homogeneity of the different study results 
is merely an interesting outcome not a goal in itself. 

Meta-analytic methods frequently combine evidence 
from one type of study design. Most meta-analysis in 
the medical area have been based on the RCT. 
However, as argued earlier, this design may not be 
ideal for the purposes of economic evaluations. It 
follows that a meta-analysis based solely on RCT 
studies may be inadequate as well. Cross design 
synthesis (Droitcour et al, 1993; US GAO, 1992) is 
designed to solve this problem. Cross design 
synthesis is a new form of meta-analysis that 
explicitly sets out to exploit the differences in study 
designs and their strengths with the intention of 
eliminating the bias inherent in any one particular 
study design. It is another type of model that can 
serve as input to economic evaluations. Unlike most 
meta-analyses, cross design synthesis studies are 
chosen for complementarity of research design so 
that one type of bias may be eliminated by exploiting 
the strengths of another. 

Since RCTs have a great strength in their internal 
validity, but potentially poor external validity, and 
databases, for example, may be subject to selection 
biases, but do make observations under more 
naturalistic or routine practice conditions, these types 
of studies are considered complementary in design. 
One's strength is the other's weakness. Table 9 
summarizes this concept. 

There are two steps in cross design synthesis. The 
first is to assess the overall quality of the studies 
identified and the second is to incorporate a 'focused 
assessment' and choose studies based on their bias 
and the possibility of its elimination through use of 
complementary design. This second step - the goal of 
elimination of bias - is the hallmark of cross design 
synthesis that distinguishes it from the general field 
of meta-analysis. As an example, to pronounce on the 
generalizability of the results from an RCT, cross 
design synthesis would examine the way in which 
patient recruitment was accomplished and compare 

Table 9 Two complementary study designs 

Design Primary Primary potential 
strength* weakness* 

Randomised Patients randomly N o t representative 

controlled trials assigned to treatments; of full range of 

( R C T s ) controlled comparison patients and 

treatment 

implementations 

Database Coverage of medical Uncontrolled and 

analyses practice (full patient imbalanced 

population; all comparison 

implementations) (treatment 

assignment bias) 

(from Droitcour, et al., 1993) 

^Strengths and weaknesses according to the research question: Does the 
treatment 'work' in medical practice? 

the representativeness of that sample with the 
population of interest. It would examine the 
inclusion/exclusion criteria, the investigators' choices 
of eligible patients, the patients willingness to 
participate once selected, etc. If the sample differed 
greatly from the target population, this would supply 
a initial basis for further investigation for potential 
bias. In terms of adjusting results for bias, age or sex 
linked results could be examined and a trial sample's 
results reweighted according to population 
representativeness if it differed in that regard. 

Cross design synthesis is a relatively new field with 
interesting potential, but with considerable 
development still required. It requires investigators 
to exercises judgment in many situations, rather than 
take and apply an objective method off the shelf. This 
appears as a weakness, but one shared by the entire 
modelling discipline. Whether one can still be said to 
be engaged in scientific enterprise is an issue for 
debate. Policy makers and other customers for 
economic analyses and modelled results may cringe 
at the potential for subjectivity. It is to this issue that 
we now turn. 



'...discovery commences with the awareness 
of anomaly.' 
- T. KUHN (Thaler, 1992, p. 5) 

..now heaven knows, anything goes.' 
- COLE PORTER ( 1 9 3 4 ) 

It should be clear that current practice in the 

evaluation of medicines for purposes of registration 

is less than ideal when viewed from the perspective 

of an economic analyst. What are the options 

available for solving this problem? One can redesign 

trials so that they are measuring what economists 

and those interested in economic results would like 

to see measured. Current and (realistically) future 

regulations of the clinical development process will 

prevent this if financial concerns do not. While RCTs 

can be modified to better measure what is of interest 

for economics, their structure (particularly in a pre-

marketing environment) effectively prevents many of 

the aforementioned problems from being completely 

addressed. Alternatively, one can wait to perform 

economic evaluations until products are marketed, 

and either conduct less rigidly controlled trials or 

observational studies as a substitute. This solution 

suffers from a timing problem - the economic 

information is needed by all interested parties at the 

time of marketing, not several years afterwards. 

Furthermore, such trials or observational studies do 

not eliminate bias, they merely reduce it or alter the 

type of bias. 

This monograph has described the concepts of 

outcomes and economic modelling to attempt to 

correct for the basic deficiencies of evidence in pre-

marketing RCTs. It has presented the case for not 

only a continuing but an expanded role for modelling 

in the economic analysis of pharmaceuticals. It would 

appear that Eddy's 'flexible, but firm' approach 

(Eddy, 1990) to technology assessment has much 

appeal. It will enable economic evaluations to 

proceed on the basis of whatever evidence exists at a 

given time - with the credibility that results from the 

tvpes of evidence available and the way in which it is 

used. The only way to obtain accurate answers to 

these questions is for modelling to continue and 

expand in its use. 

Of course nonexperimental methods of outcomes 

research and modelling efforts which can be as casual 

as educated guesses or as formal as a sophisticated 

formal epidemiology study are subject to criticism. 

One researcher, Peto, indicated his adherence to the 

RCT paradigm in stating his opinion of the 

substantial investment in recent years in 

nonexperimental methods of 'outcomes research' as 

'worse than just destroying the money because it 

gives the illusion of information (Anderson, 1994).' 

The RCT has served and continues to serve in one 

particular capacity quite well. That it does not serve 

as well in other capacities should not surprise 

anyone. The apparent lack of assailability in 

deployment to answer one set of problems should 

not blind its champions to its flaws when applied 

elsewhere. The RCT too is a model - with numerous 

assumptions that may or may not reflect the reality of 

medicine taking in the population eventually 

destined to receive the product. These assumptions 

may affect the validity of the clinical conclusions, but 

also the economic ones (even if the clinical 

conclusions are relatively accurate). 

Modelling is not a panacea. The different results 

obtainable by using different intermediate endpoints 

in a model, for example, are due to some being good 

predictors of final outcomes and others failing in that 

regard. To the extent that the chosen endpoints are 

faulty, any model built upon them will be flawed. 

Despite the potential strengths of modelling, we have 

to expect this to occur from time to time. In Chapter 3 

we discussed the TIMI-I trial and its choice of 

intermediate endpoints that led to remarkable 

overestimates of the superiority of tPA over 

streptokinase. Later analysis of mortality data 

indicated either a much smaller superiority for tPA 

or in fact none at all, depending on the statistical 

procedures used. A more serious case involving 

intermediate endpoints occurred with drugs used for 

cardiac arrhythmia. The endpoint chosen for early 

study was suppression of premature beats, an 

indicator of electrical instability in the heart. The 

strength of faith in the endpoint and the drugs 

themselves was so great as to almost ethically rule 

out the trial that ultimately tested them. This trial 

was in fact prematurely terminated when the treated 

group of patients was found to have an excess 

mortality rate over placebo (Moore, 1995). It is clear 

that models that translate intermediate endpoints to 

final ones must be based on solid foundations and, 

even then, may occasionally err. Models will, of 

course, not always be correct. They purport to 

provide (when done honestly) a 'best estimate' given 



the currently available information. That they may 
later be shown to have been in error, is entirely 
possible. Models buys results in a timely and 
relatively inexpensive manner - the price can 
sometimes be inaccuracy. 

Models have a great potential for being relatively 
subjective. One of the reasons for using the RCT is to 
avoid the dangers inherent in casual observation and 
the errors of subjectivity. When we leave behind the 
objective RCT for the less controlled techniques of 
modelling, we also create a great potential for 
encouraging pseudo-science. While some see the 
anomaly of health economic research using tools ill-
suited to its purpose as a challenge for methods 
development and discovery, the same flexibility 
demanded in legitimate modelling efforts can be 
interpreted as exploratory license by others -
'anything goes.' The RCT has many advantages, one 
of which is the relatively secure paper trail of a 
protocol detailing primary endpoints, clear records of 
all variables collected on patients, etc. Modelling 
exercises appear to toss aside these strengths and rely 
at some level on speculation as to 'reasonable' values 
for costs or frequency of events not measured in the 
trial. There is no paper trail for the choices so made. 
There is no clear commitment up front to a particular 
assumption or set of assumptions. Rather one may 
try many assumptions and choose on whatever basis 
is desired the one which will be presented. Data 
mining (or assumption mining, its less limiting 
relative) offers considerable potential return. Thus 
while modelling offers the greatest potential for 
obtaining accurate results for economic evaluations 
when done sensibly, it also offers the potential for 
subjectivity a n d / o r abuse or just plain old 
inaccuracy. See Sheldon (1996), Luce (1995) and 
Buxton et al (forthcoming) for further discussion of 
the problems with modelling. 

Does 'anything go' in modelling? There is a potential 
for wildly inaccurate results based on the legitimate 
or illegitimate assumptions of modelling studies. 
Illegitimate assumptions can be generated through 
active attempts to mislead in a market where such 
studies may determine the movement of significant 
funds toward or away from particular products. They 
may also be generated through incompetence on the 
part of analysts. This may be particularly dangerous 
in the current environment where the casual observer 
hears many opinions offered as to the necessary 
(usually described as minimal) talent to do 

'pharmacoeconomics'. Some analysts who would 
never presume to pretend to qualification in other 
fields of scientific inquiry apparently have few 
qualms at pretending to this throne (one does not 
observe similar casual claims to expertise in 
biochemistry or physics). Total (or near) ignorance of 
the history of development of analytic method in 
economics leads some of these people to 'make it up 
as they go' with a finger in the wind of methodology 
to judge the wisdom of their chosen method. It seems 
fine, and they adopt it, ignoring the (unknown) fact 
that they proceed in the direct contradiction to 
accepted method that may have been acknowledged 
in the economics or decision sciences literature half a 
century ago. It is clear that modelling is only as good 
as the person doing it; Schecter (1993) has indicated 
several examples of where authors implemented 
some form of decision analysis based on what may 
have appeared to be reasonable assumptions to the 
intelligent layperson, but which amounted to 
nonsense from a scientific and analytic perspective. 
This type of result is quite likely when one has 
persons untrained formally in analytic methods 
attempting to perform tasks beyond their talents. 
Moreover, many of these practitioners appear to be 
painfully unaware of their ineptitude - modesty is 
not a common trait. To paraphrase the American 
comic pundit Will Rogers, 'the problem isn't what 
they don't know, but what they know for sure that 
just ain't so.' 

The current undersupply of high quality talent in the 
economic evaluation field appears to imply that this 
situation will not change rapidly. This situation lends 
credence to those who might conceive of the 
activities proposed herein more as meddling than 
modelling. The casual approach to the field exhibited 
by some has raised significant concern among many 
parties and may be at least a partial explanation for 
the movement toward the 'standardization' of 
methods (Hillman et al, 1991; CCOHTA, 1994). In the 
quest for a better vehicle to assist in answering the 
questions posed in economic evaluations of 
medicines can the modelling solution offer any 
guarantees that it will not be consciously or 
unconsciously abused? If not, pricing/reimbursement 
authorities and other 'customers' for economic 
evaluations will be slow to accept the modelling 
efforts and will perhaps be encouraged only by 
complete transparency of method and perhaps free 
availability of the data utilized. 



In a recent draft document (intended, in its current 
form, for discussion rather than policy), the Division 
of Drug Marketing, Advertising and Promotion at the 
US FDA has suggested certain 'principles' for its 
review of economic evaluations used as promotional 
material by pharmaceutical companies (DDMAC, 
1995). It is clear from that document that there is 
some level of awareness of many of the issues 
presented in this monograph. The US FDA intends 
there to be constraints put on economic analyses used 
for promotional activity. It is not at all clear at this 
point that any constraints will be fully transparent. 

The draft document is quite vague (perhaps 
appropriately so at this stage). It is unclear whether 
'modelling' is acceptable or not. Rather, it is clear that 
it might or might not be acceptable. Little guidance is 
currently proposed as to what will define the 
acceptability. The document states that 'models to 
provide estimates of PE [pharmacoeconomic] 
parameters should be used only when it is 
impractical or impossible to gather data using 
adequate and well-controlled studies (DDMAC, 1995, 
p.4). This appears to cast doubts on the future of 
modelling, at least for the FDA. However, other areas 
of the document appear to rely (without saying so 
explicitly) on modelling in their calling attention to 
issues of external validity. Depending on one's 
definition of 'impractical' or 'impossible', this 
suggested constraint on modelling may or not be 
limiting. If it is acknowledged that RCT results are 
insufficient, then it may be a mere corollary that it is 
'impossible' to gather the necessary data using only 
adequate and well-controlled studies. The DDMAC 
document clearly recognizes the distinction between 
efficacy and effectiveness and the dual need for both 
external as well as internal validity in studies. What 
is necessary is that the document be clearer on what 
is or is not acceptable so that analysts have a known 
set of expectations before them. In many ways the 
current document stands as a wish list for external 
validity and internal validity and scientific rigor. In a 
way, who could object? Implementation is where it 
will matter. How can one satisfy the wish list? Will 
the attempt be acceptable? 

The predominant general sentiments offered are that 
particular activities 'may be' acceptable or necessary, 
and that 'scientific rigor' is important. Hopefully the 
draft document will be extensively modified prior to 
its becoming policy so that what constraints remain 
will be valid and clear for both FDA personnel 

responsible for implementation and those they will 
be regulating. 

Many analysts and reviewers are inexperienced in 
this area. There will be continuing pressure not to 
allow such modelling. This would be a mistake. That 
said, the concerns of those expressing doubt are not 
groundless. The well-known phrase, 'garbage in; 
garbage out' applies to models as to many other 
endeavors. One solution is a high degree of 
transparency in method and assumptions and 
perhaps data availability (at least to peer reviewers 
for journals, expert users, or DDMAC reviewers at 
the FDA). Rather than make a blanket policy against 
such models, perhaps a more rigorous and 
transparent review policy (with commissioned 
responses by qualified reviewers?) would be 
appropriate. 

Ultimately, good (and bad) analyses will show 
themselves to be so either via the scrutiny of 
qualified reviewers or users, particularly larger 
sophisticated users with their own in house expertise, 
or through ensuing battles in the marketplace 
between analysts attacking each other's methods 
and/or assumptions. Meanwhile a good dose of 
scepticism is probably a good accompaniment to a 
review of any economic model for they will all of 
necessity be built upon a foundation of assumptions, 
some more heroic than others, depending on your 
perspective. A critical attitude can go a long way in 
the quest for accurate assessments of economic 
analyses. Transparency on the part of analysts would 
appear to be a necessary (though perhaps not 
sufficient) condition for signaling quality (or its 
absence). Models that lack transparency might defacto 
be suspect, if not from an analytical perspective, at 
least from a marketing one - why should vou believe 
what you do not understand? Of course, one person's 
transparency is another person's superfluous detail -
the mission of publication in scientific journals may 
be difficult to reconcile with some interpretations of 
transparency. Caveat emptor is a phrase that has stood 
the test of time. There is no reason to consider it an 
outmoded aid. Ultimately, education of users to the 
potential invalidating subjectivity of some models is 
the answer. Understanding how to review and 
critique a model contributes immeasurably to the goal 
of not being misled by them. Armed with that 
capability allows one to relax when confronted by a 
model, comfortable that it no longer is an 
uninterpretable 'black box'. Of course, this level of 



knowledge and understanding does not come 
cheaply, but to invoke another time-honored phrase, 
'if you think education is expensive, try ignorance'. 
The stakes are high and it must be recognized that 
models can both illuminate or obscure. True 
understanding requires an effort on the parts of both 
the modellers and the users of models - transparency 
and education. 

The opposition to deploying other methods to 
answer the very practical questions of economic 
evaluations of medicines is disintegrating. While we 
should heed warnings of critics regarding potential 
validity problems, particularly the potential for 
subjective (and selected) assumptions to creep into 
modelling efforts (see Sheldon, 1996), we should not 
prevent the development of the field by adhering to 
methods unsuited for the issues at hand. That there 
will continue to be legitimate (and not) objections to 
these changes is as true as it is irrelevant. Serious 
issues and opinions should not be changeable 
overnight - they could not have been very seriously 
or reasonably held if they could be. The 
developments in this field must move onward, 
acknowledging and addressing, but not wallowing 
in, the warnings of critics. Quality of analysis will 
ultimately decide the issue. The exchange of debate 
and the continuing education of analysts and 
customers for evaluation results is very important in 
furthering the field as rapidly as possible to meet 
current and future challenges in health care priority 
setting. The Nobel laureate Max Planck once stated, 
'a new scientific truth does not triumph by 
convincing its opponents and making them see the 
light, but rather because its opponents finally die, 
and a new generation grows up with it.' Hopefully 
the future of economic evaluation method need not 
be this pessimistic. 
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'...it is pure myth that Intently these 
probabilities and utilities existed deep down and 
that the analyst merely has to away the fat in 
order to display the pre-existing structure.' 
- B E L L et al (1988) 

Early on in the economic assessment of medicines and 
other treatment programs, it was recognized that all 
treatment outcomes resulting in survival were not 
equivalent. The saving of life did not equate across all 
cases. Complete recovery was obviously different from 
recovery at a level less than that of full functioning, but 
how should these differences be accounted for? The pure 
measurement of quality of outcome is captured in the 
idea of quality of life (QoL) measures. However, many 
QoL measures lack the ability to tradeoff quality and 
quantity of life, making them less suitable to use in 
economic evaluations. Here we will concentrate on so-
called generic measures of quality of life that are 
preference-based. We will examine methods that yield a 
single numerical measure of quality and are usable across 
disease categories. Readers interested in more broadly 
defined QoL measures as well as further discussion of 
those below are referred to Patrick and Erickson (1993). 

Of all the ways in which models may be used in the 
economic evaluation of pharmaceuticals, modelling 
outcome valuations is perhaps the least controversial in 
terms of the consensus on the need for obtaining 
information outside the trial environment if the primary 
evidence for the model is an RCT. If the primary 
evidence is from retrospective analysis of trials or 
databases, there is simply no choice - one must model 
the valuation as no data would otherwise be available. 
When the primary data come from a prospective RCT, it 
is not as clear why the valuations should not come from 
the same source. Indeed it is possible to obtain 
valuations from those recruited to be in RCTs; it is 
simply that the sample of opinions may be too limited in 
such a sample and that the added requirements for 
clinical investigators may be problematic in a trial. If 
there is no necessity of obtaining this information from 
the same RCT patients, the additional burdens to both 
patients and investigators can be avoided. 

One reason why the patients in RCTs need not be asked 
(or should not be asked) to make these valuations is that 
if it is public policy decisions (e.g. pricing, 
reimbursement, etc) that are to be informed by the 
analysis, then it is the views of the public that matter in 
terms of resource allocation and priority setting. More 
accurately, it is the views of the informed public that 
matter (Drummond et al, 1987). It is imperative that 
respondents to valuation questions be informed about 
the true nature of the health states they are valuing. It 
has been suggested that patients and health care 

professionals will be most knowledgeable about diseases 
and health states associated with them. Asking these 
individuals to value these states may be easier because 
these people are more quickly able to understand the 
important aspects of the outcomes, having experienced 
them or witnessed them in numerous cases. However, it 
may be the case that such individuals are biased in their 
views of the health states because of their experiences. 
Strategic interests may imply that responses may not be 
true as patients feel that their treatment or that of others 
like them may be influenced by their responses. Health 
care professionals may suffer from similar biases. Other 
nonstrategic biases may also be detected in the sample 
of respondents used. The experience of having a 
particular health state may influence the responses 
elicited as well. The interaction of many confounding 
influences on patient valuations of health states may 
imply that valuations are biased. Sociodemographic 
characteristics of health care professionals in particular 
may imply less generalizability to the general 
population (Drummond et al, 1987). If the valuations are 
being used to compare several treatment interventions 
as to their cost-effectiveness, it may be quite important 
to value outcomes in a uniform set of individuals, a 
criterion which patients chosen from across disease 
categories will not meet (Drummond et al, 1993). 
There are disadvantages to valuations done with 
subjects who are less familiar with the states being 
valued. The descriptions of these states must be more 
detailed. There is significant evidence that the ways in 
which health states are described can have significant 
influences on responses. Researchers must take care to 
provide sufficient detail without overwhelming 
respondents with information. As essential as outcome 
valuation is to economic evaluations of medicines, the 
field treads on thin methodological ice. The process of 
preference elicitation - including not only rankings of 
health states according to value, but eliciting a degree of 
preference associated with each relative to the other - is a 
path strewn with pitfalls. Researchers must realize the 
potential biases in such preference assessment 
interviews (see Box 5 on page 37). 
There are three ways in which a model can incorporate 
the valuations of health outcomes. One can use 
judgment, values from the literature or measurement on 
a sample of respondents (Drummond et al, 1987). 
Judgments can be reasonably accurate and may suffice 
in some cases to answer questions that are not 
particularly sensitive to small changes in valuations. 
Sometimes the literature will already contain valuations 
of health states from previous studies. The most 
appropriate way to obtain health valuations is to 
measure them directly. In this way one can tailor the 
valuations to the exact needs of the study. This is the 
more resource intensive alternative however. 



Box 5 Framing bias in preference measurement studies 

There are numerous pitfalls in the elicitation of patient 
preferences for health outcomes. One of the more 
interesting is referred to as 'framing bias'. McNeil and 
colleagues (1982) supplied some initial evidence of this 
problem in the health care arena though it was already 
established in other contexts in the psychology 
literature (Kahneman et al, 1982). 

When patients were asked questions about their 
preferences for particular treatments described by the 
probability of treatment success (the success frame) 
they gave different responses than when asked the 
identical questions framed in terms of probability of 
treatment failure (the failure frame). It is important to 
note that this was identical conceptual information as 
the probability of success was simply one minus the 
probability of failure; yet, the responses differed. 
Interestingly, while the answers differed across the 
three categories of respondents questioned: patients, 
physicians and graduate students, each group 
exhibited the same direction of bias due to the framing 
of the questions. The latter groups had been considered 
to be less susceptible to this framing influence because 
of their training. A similar experiment was conducted 
in which a 'mixed frame' was also included where 
both survival and mortality frames were used (McNeil 
et al 1988, see Table 10). This survey was done in the 
US and in Israel with results confirming the earlier 
work reported below. Interestingly the mixed frame 
was somewhat similar to the mortality frame, perhaps 
indicating the dominance of mortality frame influences 
even in a balanced presentation. 

Table 10 Percentage of respondents favouring 
radiation (over surgery) for lung cancer under three 
different framing formats 

Framing format 

1. Survival 

2. Mortality 

3. Mixed 

US sample 

16% 
50% 

44% 

Israeli sample 

20% 

45% 

34% 

total 

18% 
47% 

40% 

It should be clear that framing differences can yield 
different results potentially when the true preferences 
are not in fact different. This provides an argument for 
standardizing approaches to preference assessments so 
that differences attributable to these biases are not 
mistakenly attributed to treatments. Of course, 
deciding which method to standardize can be 
problematic as it is not clear what the correct method 
is. Also, commonality of method need not necessarily 
imply neutrality of method so that using the same 
method may imply a different ranking of treatments 
when using one method than another. More research 
needs to be one in this area. 

The problem is less acute within a single study where 
presumably the methods for assessing one treatment 
would be the same as another than between studies 
where common methods would be less likely. Such 
problems are particularly acute in the formulation of 
so-called League Tables where the cost-effectiveness 
results of a series of treatments are ranked from low to 
high. The value of these tables when a wide variety of 
methods has been used is questionable as it may be as 
much the variety of method that determines ranking as 
treatment effect and cost (Drummond et al, 1993). 

Other biases in preference assessment also exist, and 
this should be considered in constructing models of 
patient preferences (McNeil et al, 1982). There is 
significant evidence that great care must be taken in 
performing and interpreting preference assessment 
studies. Slovic et al (1988) warn that the method of 
preference assessment may in fact be a major force in 
shaping the expression of respondents' values. While 
the economic evaluation field desperately needs such 
measurements, it needs to remain aware of the 
potentially fragile foundation many of them may be 
built upon. 

Sourer: M c N e i l et ai 1988 



There are three main techniques for assessing the 

preferences of respondents for health outcomes. These 

are the rating scale, the time-tradeoff (TTO) and the 

standard gamble (SG). Each is illustrated in Figures 10-

12. In the rating scale method, respondents are instructed 

to make a mark on the indicated scale to describe where 

they feel the given health state ranks on a scale of death 

to perfect health. The distance between the mark and 

these anchor states is to represent the degree of relative 

preference between the health states being valued. 

Several health states can be ranked on one rating scale. 

The distances between these marks is translated into a 0-

1 scale (death - perfect health) and 'utility' values are 

computed. Thus a health state corresponding to a mark 

halfway between death and perfect health would be 

assigned a utility value of 0.5. 

The TTO method was introduced as an approximation 

to the SG, in hopes that it would be easier to use as 

respondents sometimes have difficulty with the notions 

of probability inherent in the SG. It should be noted 

uncertainty. The SG method does this. Standard theory 

of economics suggests that preferences under certainty 

and uncertainty will not generally be the same, thus 

supporting the notion that the various 'utility' 

assessment methods are in fact measuring different 

things. Empirical studies of these methods do yield 

different answers to valuations of the same health states, 

lending some credence to this notion. 

The T T O assesses the value of some health state x for the 

remainder of one's life. It accomplishes this by asking a 

hypothetical question of will ingness to trade that health 

state and its duration for the state of perfect health for a 

lesser number of years. The more debilitating the health 

state being valued, the more years of life one would be 

willing to give up in order to attain perfect health for 

those years. If life expectancy is LE years in health state 

x and someone will trade this for T (<LE) years of life in 

perfect health, then the 'utility' of health states x is 

assumed to be representable by the fraction T / L E . 

Figure 10 Rating scale for measuring preferences for 
health states 

Figure 12 Standard gamble method for measuring 
preferences for health states 

Perfect health for LE years 

Health state x for LE years 

Death 0.0 

however that the TTO method measures preferences (as 

does the rating scale) under conditions of certainty. This 

has been pointed out as a defect in these methods as 

there are theoretical arguments that medical outcomes 

(themselves frequently uncertain) should be assessed in 

terms of preferences for them under conditions of 

Figure 11 Time-tradeoff method for measuring 

preferences for health states 

U(x) = T/LE 

Perfect health = 1.0 

U(x) 

(P) 

( I -P) 

• 

LE Time 

Perfect health for LE years 

Death 

Health state x for LE years 

The standard gamble asks respondents to compare the 

health state being valued with a lottery or gamble 

between instant (painless) death and perfect health for 

the same number of years as health state x. The gamble 

has probabilities associated with it that make it relatively 

attractive or unattractive compared to health state x. The 

worse is health state x, the more acceptable will be the 

prospect of a higher probability of death to avoid the 

health state. The patient essentially chooses a probability 

for the perfect health outcome so that they are 

indifferent between the gamble and heath state x. The 

SG is built upon economic theory that claims that the 

satisfaction associated with a lottery can be represented 

by a so-called certainty equivalent to the gamble. When 

a respondent is indifferent between the certain event and 

the gamble, the utility can be represented by the 

probability of the perfect health outmode. The details 

are beyond the scope of this account, but can be found 

in Torrance (1972). As the SG is the only one of these 



three methods that has any grounding in theory to 

support it, it is considered by many economists to be the 

gold standard. 

Regardless of the method used to measure utilities, the 

conventional way of using these utilities is to convert 

them into quality-adjusted life years (QALYs). This is 

done by multiplying the utility value by the years spent 

in that health state. Thus 10 years in a health state 

valued at 0.5 would result in 5 QALYs and be assumed 

to be equivalent to 5 years of perfect health. Figure 13 

shows the calculation of the QALYs saved as part of an 

intervention. Here it assumed that the relevant 

alternative is no treatment and that U(NT) corresponds 

to the utility and LEN T to the length of life under that 

alternative. The QALYs for the no treatment alternative 

are therefore U(NT) x LEN T or the area of the box with 

sides equal to U(NT) and LENT . U(T) and LET 

correspond to the utility and length of life under 

treatment with the QALYs, corresponding to U(T) x LE r 

or the area of the box with sides equal to U(T) and LE-p. 
We can see that the difference is the QALYs gained by 

the treatment and is represented by the cross-hatched 

area. Mathematically this is equal to 

QALYs gained = {U(T) x LET| - (U(NT) x LENT|. 

The cost of achieving this outcome would need to be 

compared to the costs of no treatment to determine the 

incremental cost-effectiveness ratio used to determine 

whether the intervention is worthwhile (Drummond et 

al 1987). This particular type of cost-effectiveness 

analysis goes by the name of cost-utility analysis 

because of the incorporation of valuations of outcome in 

the form of utilities. Table 11 shows an example of 

various utility values for different disease areas. 

While the SG is accepted (in the field of economics) as a 

theoretically superior alternative to other methods of 

utility assessment (in fact 'utility' is a concept from 

economics and is by definition only valid if derived 

from the SG), the QALY construction stands on weaker 

foundation. An alternative, the Healthy-years 

equivalents (HYE) has been suggested to address some 

of the problems (Mehrez and Gafni, 1989). This 

alternative has in turn been questioned (Culyer and 

Wagstaff, 1993; Johanesson et al, 1993), but the literature 

controversy appears to be unresolved at the time of this 

writing (Gafni et al, 1993; Mehrez and Gafni, 1993). 

Table 11 Two complementary study designs 

Duration Health state Mean daily 
health state 
utility 

Reference state: perfect health 1.00 
3 months Home confinement for tuberculosis 0.68 
3 months Home confinement for an unnamed 

contagious disease 0.65 
3 months Hospital dialysis 0.62 
3 months Hospital confinement for tuberculosis 0.60 
3 months Hospital confinement for an unnamed 

contagious disease 0.56 
3 months Depression 0.44 
8 years Home dialysis 0.65 
8 years Mastectomy for injury 0.63 
8 years Kidney transplant 0.58 
8 years Hospital dialysis 0.56 
8 years Mastectomy for breast cancer 0.48 
8 years Hospital confinement for an unnamed 

contagious disease 0.33 
Life Home dialysis 0.40 
Life Hospital dialysis 0.32 
Life Hospital confinement for an unnamed 

contagious disease 0.16 
Reference state: Dead 0.00 

(from Drummond, Stoddart & Torrance, 1987) 

Figure 13 QALYs gained by treatment over no 

treatment alternative 

LENT LE t Time 



'Investigators seem to have settled for what is 
measurable instead of measuring what they 
would really like to know' 
- E Pell igrino (Meinart , 1986) 

In m a n y cases the e c o n o m i c researcher is faced with a 

previously col lected set o f data or at best the prospect of 

being a l lowed to ' p i g g y b a c k ' o n t o an R C T w h i c h is 

pr imari ly in tended to serve other purposes . 

M e a s u r e m e n t s of essential var iables m a y or m a y not be 

m a d e . If m a d e , they m a y be m a d e in a w a y unsuited for 

the e c o n o m i c analyst ' s purpose . M o d e l s can b e used to 

correct for s o m e of these problems. Two e x a m p l e s are 

provided here to i l lustrate these ideas. 

H A - 1 A in s u s p e c t e d s e p s i s 

H A - 1 A w a s a product des igned to be effect ive in sepsis 

(specif ically in gram-negat ive bac teremia cases - G N B ) . 

An early trial s h o w e d it to be effect ive in this subgroup, 

a n d Ri t tenhouse (1995) indicated the potential effects of 

modi fy ing the a s s u m p t i o n s of the analysis to 

incorporate the likely differential abil it ies of trial 

invest igators and physic ians in less control led 

envi ronments . 

T h e drug m u s t general ly b e adminis tered pr ior to 

diagnost ic conf i rmat ion of G N B . This impl ies that in 

m a n y cases it is l ikely to be given when the pat ient 

could not benef i t s ince the prevalence of G N B in cases of 

suspected sepsis is relat ively low as c o m p a r e d to gram-

posi t ive or non-bacteremic causes (nGNB) . In an early 

trial of H A - 1 A plus convent ional antibiotics c o m p a r e d 

to p lacebo and convent ional antibiotics , Ziegler et al 

(1991) s h o w e d an impress ive G N B s u b g r o u p analysis 

s u m m a r i z e d in Figure 14 below. 

T h e s u b g r o u p analysis indicates that there is a 19 per 

cent increase in survival in the act ive arm. This w a s 

statistically s ignif icant and certainly appears to b e 

cl inically signif icant . To base a cost -ef fect iveness analysis 

on such results would h o w e v e r be highly mis leading 

s ince the drug m u s t be given to m a n y more than just the 

G N B subgroup. However , another aspect of the trial a lso 

could result in highly mis leading e c o n o m i c analysis . T h e 

trial used fairly restrictive inc lus ion/exclusion criteria, 

part ial ly to inflate the percentage of G N B cases in its 

s tudy sample . This is perfect ly legit imate in a trial as it 

will reduce the s a m p l e necessary to s h o w statistically 

s ignif icant effect. It also reduces e x p o s u r e of pat ients 

w h o are unl ikely to benefi t from the inconvenience of 

part ic ipat ing in a trial. However , for e c o n o m i c 

evaluat ion p u r p o s e s it is potent ial ly highly mis leading 

to use these results unless the drug w o u l d b e used in as 

h igh ly restrictive m a n n e r in the non-trial popula t ion 

once it were marketed. This is genera l ly not likely. In the 

specif ic case of H A - 1 A , it is even less likely b e c a u s e of 

the potential legal l iability (in the US) if the restrictive 

use patterns depr ived a patient , eventual ly s h o w n to be 

G N B , of access to the d r u g . More impor tant ly however , 

might be the general inabil i ty of physic ians to d iagnose 

bac teremia or G N B . This m a y lead to signif icant errors 

in use of the product - m a n y more than in the trial will 

not be able to benefit , but will incur costs . We note that 

this does not necessari ly mean that the product is not 

effect ive for a s u b g r o u p of patients w h o are in fact G N B ; 

it does m e a n that the costs per unit of desired effect will 

b e h igher however . This m a y imply that the product , 

though effect ive in a subgroup, is not cost-effective. This 

is largely b e c a u s e of the inability to identi fy that 

s u b g r o u p in a t imely manner . T h e analysis b e l o w 

indicates the va lue of a rapid diagnost ic ability paired 

Figure 14 Trial results ( subgroup) F igure 15 Trial results (entire sample ) 
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Source: Rittenhouse, 1994 Source: Rittenhouse. 1994 



with such a drug - its cost-effectiveness would be vastly 
improved. 

In fact in this case, there is even more reason to develop 
the diagnostic test. The costs are not the only variable 
affected by the improper use of the drug in non-GNB 
patients. Unfortunately, it appears that nonGNB cases 
are adversely affected by HA-1A. They are not merely 
not helped, they appear to have a higher mortality rate 
than the placebo arm. Thus a rapid diagnostic ability 
that could in a timely manner differentiate between 
those likely to be helped versus those likely to be 
harmed by the product would assist in the cost-
effectiveness of the product by affecting both the cost 
and the effect. 

Figure 15 indicates the results for the entire sample. The 
beneficial effect for HA-1A is significantly altered from 
the sub-group case, with a four percent (not statistically 
significant) improvement over placebo. 

Figure 16 provides more detail about these groups. 
Specifically it provides details on the frequencies of GNB 
in each treatment arm (.40 in the HA-1A arm and .33 in 
the placebo arm). Both proportions are higher than that 
which would be expected in the general 'sepsis' 
population (Bone et al, 1987). The overall survival rates 
for each treatment arm (second figure) are weighted 
averages of the survival rates of each sub-group, GNB 
and nonGNB: 

P ( S I H A - I A ) = 

P(S I GNB) P(GNB) + P(S I nGNB) P(nGNB) = 
(0.70) (0.40) + (0.554) (0.6) = 0.61 
and 
P(S I p lacebo) = 

P(S I GNB) P(GNB) + P(S I nGNB) P(nGNB) = 
(0.51) (0.33) + (0.598) (0.67) = 0.57 

These data represent conditional probabilities of survival 
based on using HA-1A or placebo and having GNB or 

F igu re 16 Trial resu l ts i n m o r e de ta i l 
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not. For e x a m p l e the first equat ion uses the condit ional 

surviva l rates for G N B and n G N B for H A - 1 A times the 

probabil i t ies of G N B a n d n G N B to achieve a weighted 

average of the probabi l i ty of survival w h e n H A - 1 A w a s 

adminis tered in the trial. 

In the nontrial world the proport ion of G N B is expected 

to b e around 0.30. T h i s would cause the overal l survival 

rate to fall in the HA-1 A group as w e can see if w e 

subst i tute this proport ion in for the weighted survival 

rate for HA-1 A (we need to c h a n g e the n G N B 

proport ion as well) . Both c h a n g e s imply a decrease in 

the overall survival rate since the group with the h igher 

survival rate (GNB) is be ing reduced in proport ion to 

the group with the l o w e r survival rate ( n G N B ) . 

Interestingly, the s a m e changes in the p lacebo arm will 

h a v e the opposi te effect. This fo l lows from the fact that 

the higher survival rate in the p lacebo arm occurs in the 

under-represented arm of n G N B . T h u s this arm should 

in the nontrial world h a v e a greater representat ion and 

would therefore imply an increased survival for the 

placebo arm as a whole . The combinat ion of these 

changes would cause the overal l survival rate 

differentiation b e t w e e n treatment and placebo (0.61-0.57) 

to shrink. 

It is instruct ive to cons ider t w o ext reme examples . W h a t 

would h a p p e n if on ly G N B pat ients were to receive the 

B o x 6 T h e v a l u e o f i n f o r m a t i o n 

In Box 1 on page 10 w e presented a very s imple decision 
analytic model of treatment choice. Somet imes w e can 
take our decision-analytic model and reduce the 
uncertainty in it - usually at a cost. Instead of just using 
a treatment without knowing what the effects will be 
except probabilistically, w e can seek information that will 
reveal the optimal course of action. But is that 
information worth seeking? We would like to know the 
value of such information in order to determine whether 
its acquisition is 'worth it'. Here the example expands 
upon that of Box 1. 

Recall from the earlier example that the choice of therapy 
was between n e w and old treatments, with the outcomes 
as rapid or slow recovery. We saw in that example that 
the therapy choices should b e expanded to include a 'no 
treatment' option. We add n o w to that example . If a 
patient is of type I, then she will achieve rapid recovery 
with one hundred percent certainty under the new 
treatment. However, if she is of type II, she will (with 
certainty) have a s low recovery even with the new 
treatment. The old treatment works at the s a m e 
probabilistic level as before in all types of patients. O n e 

product? In this case the s u b g r o u p analysis is valid a n d 

an extremely rudimentary e c o n o m i c analysis ( looking 

only at drug costs) would indicate approx imate ly a 

$21 ,000 cost per saved life. This is based on the 

est imated cost of the drug of $4 ,000 per administrat ion 

(Ri t tenhouse, 1995), implying a t reatment cost of 

$400 ,000 to 100 patients of which there would b e an 

increased survival of 19 lives through using H A - 1 A . 

U n d e r a less optimistic view, if the probability of G N B fell 

to 0.20, the differential survival probabil ity would fall to 

zero and the expenditure would result in no benefit at all 

- an unimpress ive infinite incremental cost-effectiveness 

ratio! While it appears counterintuit ive that the frequency 

of G N B would fall below its populat ion expected value of 

0.30, Poses (1991) provides data that indicate a fairly poor 

diagnostic ability of physicians in this indication area. 

C o m b i n e d with other incentives (e.g. liabilitv induced) 

such inappropriate levels of use can easily be imagined. 

This e x a m p l e is instructive in several respects. Most 

importantly, it indicates the important effect that relative 

diagnost ic abil it ies can have on the cost-ef fect iveness of 

products . T h e abilities in a trial wi th highly competent 

invest igators and strict protocols for inc lus ion/exclusion 

criteria versus those phys ic ians in the nontrial 

e n v i r o n m e n t are potential ly quite different. Th is 

dif ference can have a dramat i c i m p a c t on the e c o n o m i c s 

of the drug. A n o t h e r important point brought out by 

can model the decision with this uncertainty (if w e have 
s o m e idea of the probabilities of being type I or type II) 
and determine the best course of action. Alternatively, 
one might have access to a diagnostic test that identifies 
the individual as type I or II. In the s imple case outlined 
here, the decision to use such a test will depend on the 
cost of the test and the prevalence of type I and II 
individuals. General ly such a test m a y be worth using 
(or worth developing) , depending also on the cost of 
making an error in giving the wrong drugs to the wrong 
people. 

We can evaluate the testing strategy itself in a decision 
analytic f ramework by adding a choice to the existing 
tree. We n o w have an alternative choice consisting of 
testing the type of the patient and treating according to 
the results of the test. We can determine whether testing 
is ever warranted and w e can determine how the cost of 
the test should influence our decision. Along the way w e 
can explicitly determine the value of the information that 
the test supplies. We found in the earlier example in Box 
1 that no treatment was the optimal result (with our sole 
concern being monetary costs). Will this remain the case? 



Box 6 T h e value of informat ion (cont inued) 

Figure 17 Expansion of Figure 3 Simple decision tree 
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First note that once the test is performed, w e know the 
optimal choice. That is, once we know the individual's 
type, we analyze a smaller decision problem - optimal 
treatment conditional on the type of individual. We can 
see this by analyzing the two 'sub-trees' coming from 
the branches marked T and 'II ' in Figure 17 above. 
These are analyzed as before except that they have a 
few different probabilities associated with the 
branches. If the individual is type I then the optimal 
choice of treatment will be the new treatment: 

New treatment expected cost: (1.0) ($50) + (0) ($100) 
= $50 
Old treatment expected cost: (.4) ($24) + (.6) ($76 
= $55.20 

No treatment expected cost: $52 

If the patient is type I I , then no treatment is optimal: 

New treatment expected cost: (0) ($50) + (1.0) ($100) 

= $100 

Old treatment expected cost: (.4) ($24) + (.6) ($76) 

= $55.20 

No treatment expected cost: $52 

Since we know what we would choose once we find 
out the type of patient, we can eliminate all extraneous 
information from the decision tree, reducing it to that 
below in Figure 18. If the type of patient is type I, we 
will treat with the new drug at a cost of $50; if she is 
type I I , we will not treat and it will cost $52. The 



Box 6 The value of information (continued) 

expected cost of the testing strategy (except for the cost 
of the test) is a weighted average of these two possible 
outcomes where the weights are the probabilities of 
type I and II patients. 

Figure 18 Reduced decision tree 
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At this point we can see that if the test were free, we 
would use it, but if it were not free, we might need 
more information. This is because we want to compare 
the test strategy with the no treatment strategy (found 
to be optimal previously before we considered the 
possibility of testing). The no treatment strategy costs 
$52. We know that the test strategy (assuming the test 
is free) will have an expected costs that will be a 
weighted average of the two possible outcomes from 
the test ($50 and $52). Unless all patients are of type II, 
the weighted average of these two numbers must be 
less than $52, so we would use the test. 

We know the value for the prevalence of type I and II 
patients. It must be .5, since the new drug was given 
an efficacy rate of .5 previously, and since it achieves 
either 100% success or failure, this implies a prevalence 

of .5 for each type of patient to be consistent with that 
earlier data. Knowing the prevalence, we can 
determine whether we should use the test for any 
given cost of the test. Alternatively (and more easily), 
we can determine at what price the test becomes cost-
reducing in the model. 

If we denote the cost of the test as T, then the cost of 
the testing strategy now becomes the weighted average 
(with .5 as each of the two constituent weights) of $50 
+ T and $52 + T, the outcomes of the test indicating a 
type I or II patient. The no treatment option is the best 
alternative in the absence of a test (as previously 
determined). The two strategies are equally optimal if 
their expected costs are identical. To find when this is 
the case, we simply set the two expected costs equal to 
each other and solve the resulting equation for the cost 
T that satisfies the equation. 

EC (No Treatment) = $52 
= ($52 + T) (.5) + ($50 + T) (.5) 
= EC (Test Strategy) 

This implies that when T is equal to $1.00, the two 
strategies are equally attractive. Therefore any value 
for T less than that would imply that the test strategy 
is superior. 

Such models can be used to determine when 
additional information should be sought. One can use 
such a model to determine whether one should seek 
more information in developing a cost-effectiveness 
model. How much is the information worth? Could the 
additional information make a difference of any 
important magnitude in the model, or would it be a 
waste of time and effort to get the added information? 
Effort might be better expended elsewhere. In the 
above case, we examined the case where the 
information provided was perfect. That is, it was 
definitive once the test was run. Many tests of course 
do not give a perfect indication of the situation. 
Imperfect tests would be analyzed in a similar manner, 
except that additional errors would need to be 
incorporated along with their expected costs. 



Box 7 Mode l l i ng based on in te rmedia te end points : tPA and s t r ep tok inase revisi ted 

In the earlier discussion of tPA and streptokinase it 
was noted that intermediate endpoints could be highly 
misleading of both final health outcomes and costs of 
achieving them. Implicitly those who would use an 
intermediate endpoint have a model in mind where 
that endpoint translates into a measure of final 
outcome. In using the intermediate endpoint of the 
patency of the infarct -related artery, this 'model ' was 
of dubious validity. The example shows that an 
economic model in such cases is critically tied to the 
quality of the linkages expressed between intermediate 
and final outcomes and the resource utilization 
assumptions employed in that linkage. 

One could have developed a model of the study drugs 
that used this intermediate endpoint and some 
assumption of constant percentage of mortality 
reduction given that the reperfusion was or was not 
achieved. The model could have assigned resource 

Figure 19 Simple (and incorrect) model l inking 
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utilization based on some conjectural evidence about 
what achieving or not achieving reperfusion implies 
for resource utilization and what might or might not 
happen afterwards. Such a model is illustrated in the 
figure below. It illustrates the importance of good 
outcomes assessment for economic evaluations (even 
independent of resources use modelling). 

This model reminds us of the choices one often has in 
modelling. It might be expected that the mortality rates 
under the two treatments would be the same 
conditional on reperfusion success. Presumably those 
who would have us believe in a model using that as an 
intermediate endpoint would subscribe to such an 
assumption. Alternatively, we could (if we had data) 
model the problem with different conditional 
probabilities: mortality probability conditional on 
reperfusion under tPA and conditional on reperfusion 
under streptokinase treatment (the choice of modelling 
assumptions was mentioned in the discussion of Box 
2). In choosing to emphasize the intermediate outcome 
analysts were implicitly endorsing the first option 
(data were not probably available to base a model on 
the second). Thus, the mortality probabilities 
conditional on achieving reperfusion (or not) would be 
the same for each treatment (denoted p and p' in the 
figure). Recalling that the joint probability (the 
probability of reaching each terminal node for the 
decision tree) is the multiplication of the path 
probabilities along the branches leading to that 
terminal node, the difference in reperfusion rates will 
drive the model to the conclusion that tPA is highly 
superior. While not apparently completely 
unreasonable assumptions (a priori), results on final 
outcomes of mortality were significantly less 
impressive. The equality of the conditional 
probabilities was simply not true, despite its apparent 
sense. 

Brody (1995) suggests that another choice of primary 
endpoint (again an intermediate outcome), left 
ventricular ejection fraction, was acknowledged at the 
time as 'a powerful predictor of survival after 
myocardial infarction.' For those patients for whom 
data were available on this endpoint, while tPA still 
showed superiority in terms of reperfusion, it did not 
in left ventricular functioning. Subsequent outcomes of 
later trials have shown a modest superiority for tPA, 
though nothing approaching that implied in the model 
above based on reperfusion. Intermediate endpoints 
are not all created equal. In addition to an indictment 
of careless use of intermediate endpoints, this should 
also serve as a warning to those who would extend 
them via modelling to final outcomes - the result can 
be only as good as the constituent assumptions. 



Figure 20 Model of DVT prophylaxis in hip surgery 
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Source: O'Brien, et al, 1994b 
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this analysis is the importance of diagnostic tests. If we 
can determine the cost of using the product, then we can 
also determine the value of the test that would perfectly 
(or otherwise) discriminate between gram negative 
bacteremia and not. Box 6 indicates through a simple 

example the process by which such calculations may be 
made. 

D e e p Vein T h r o m b o s i s Prophylax is 

O'Brien et al (1994b) have extensively modelled the data 
in an evaluation of enoxaparin v warfarin in prevention 
of Deep Vein Thrombosis (DVT) after hip surgery. Trial 
data were not available on the direct comparison of these 
two products as head-to-head comparison were done 
only between enoxaparin and standard heparin. 
However, the most commonly used anticoagulant in 
Canada for DVT prophylaxis in hip surgery was warfarin. 
Therefore this was deemed the relevant comparison for 
economic purposes (the recently published Canadian 
guidelines for economic evaluation of pharmaceuticals 
has condoned exactly such a strategy - CCOHTA, 1994)). 
Without incorporating modelling techniques, the relevant 
comparison could not have been made. 

This part of the model relied on meta-analysis of existing 
trials of each of the study drugs against whatever 
alternatives were used in those trials. Relevant trials were 
selected according to pre-defined protocol of what was to 
be admitted into the meta-analysis (see section on meta-
analysis in Chapter 6). Thus a 'head-to-head' comparison 
between enoxaparin and warfarin was modelled from 
data on their comparisons with other drugs. 

In this model the actual DVT rates in trials were used, 

Figure 21 Detail of Figure 20 showing additional model assumptions 
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but the resource use was modelled via assumptions on 

the number of true cases and false cases that would have 

been identified through traditional observation methods 

rather than those that were available to the trial. That is, 

the trial itself implemented nonstandard protocol to 

identify subclinical cases of DVT. Not all of such cases 

would go on to develop DVT; not all would have been 

detected in a normal practice setting; the costs of the 

detection would have been entirely different. In the 

model in O'Brien et al they use the DVT rates from the 

trial but modify them to determine how many of the 

actual cases (and noncases) would have been identified 

correctly and incorrectly in routine practice where such 

diagnostics are not conventionally used. Then 

subsequent confirmatory testing was assumed to 

confirm or deny the disease in the true and false positive 

cases respectively. Resources used in such modelled 

cases provided the estimate for the cost side of the 

economics effort; the resource use actually observed in 

the trial was not used in the analysis. 

Figure 20 indicates a section of the model described 

above. From the meta-analysis was obtained frequency 

estimates for the probability of DVT for each of the two 

drugs (pj, where the subscript refers to either enoxaparin 

or warfarin). The tree depicted thus stands for two trees, 

one for each drug, identical except for the probabilities 

of events. A detected case is assumed in the model to be 

a real case that, in practice, would either be detected or 

not clinically (there is no allowance in the model for the 

subclinical detection to be wrong itself). Thus a real case 

in practice can be a true positive detection or a false 

negative detection. The rates of true positive detection in 

the model were represented in the figure as qj, again 

different probabilities for the two different drugs (these, 

the results of another modelling effort indicating 

different rates based on the estimated different 

frequencies of types of DVT likely to result - and the 

relative abilities to detect them - from each type of 

prophylactic treatment). In the complete model (not 

represented here for ease of exposition) true positive 

detection is assumed to go on for further confirmatory 

testing in a routine practice setting. This confirmatory 

testing would have resource use implications, and in the 

O'Brien model had further error rates built into it. 

The other possibility noted in the tree is that the lack of 

DVT might be correctlv detected or that it might be 

incorrectly interpreted clinically as a real DVT. The latter 

possibility is denoted bv the probability r which is 

assumed not to vary by treatment. In the terms used 

throughout this document, r is a conditional probability 

that is independent of treatment, whereas qj, the rate of 

true positives is not independent of treatment. 

Figure 21, expanding on the bottom branch of Figure 20, 

shows one aspect of the more detailed model to indicate 

the type of assumptions used. Even in cases where no 

DVT is detected and it is assumed that clinical diagnosis 

would succeed in estimating this truth, it is possible that 

a subsequent clinical diagnosis of pulmonary embolism 

would be made (in error, by the assumptions of this 

model). Such an error would have resource use 

implications as tests were used to determine whether 

pulmonary embolism was indeed present. While the 

detection would be in error, it would still imply that 

further resources would be used and should appear in a 

realistic model. Incorporating the likely errors of the 

routine practice world will reflect the likely resources to 

be used under the drug treatment regimes. To ignore 

these errors is to misrepresent the reality of the 

treatment programs. 




